Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/2074/11429
Title: Comorbidity of chronic diseases in the elderly: patterns identified by a copula design for mixed responses
Authors: Stber, Jakob 
Hong, Hyokyoung Grace 
Czado, Claudia 
Ghosh, Pulak 
Keywords: R-vine;Pair copula construction;GLM;LSOA II
Issue Date: 2015
Publisher: Elsevier
Abstract: Joint modeling of multiple health related random variables is essential to develop an understanding for the public health consequences of an aging population. This is particularly true for patients suffering from multiple chronic diseases. The contribution is to introduce a novel model for multivariate data where some response variables are discrete and some are continuous. It is based on pair copula constructions (PCCs) and has two major advantages over existing methodology. First, expressing the joint dependence structure in terms of bivariate copulas leads to a computationally advantageous expression for the likelihood function. This makes maximum likelihood estimation feasible for large multidimensional data sets. Second, different and possibly asymmetric bivariate (conditional) marginal distributions are allowed which is necessary to accurately describe the limiting behavior of conditional distributions for mixed discrete and continuous responses. The advantages and the favorable predictive performance of the model are demonstrated using data from the Second Longitudinal Study of Aging (LSOA II).
URI: https://repository.iimb.ac.in/handle/2074/11429
ISSN: 0167-9473
DOI: 10.1016/J.CSDA.2015.02.001
Appears in Collections:2010-2019

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.