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A study on the instance space of the shift
minimization personnel task scheduling problem

Reshma Chandrasekharan Cimmo Nurmi Nico Kyngas

Abstract

Much like any other problem in optimization, the shift minimization
task scheduling problem has also greatly benefited from the presence
of a benchmark instance set. This paper studies the properties of this
benchmark dataset and identifies the factors that most influence the
hardness of these instances based on the performance of the state of
the art solution techniques available for the problem.

1 Introduction

Traditionally, workforce schedules were prepared manually. Literature sug-
gests that there is significant improvement in efficiency while using computer
generated schedules (Bergh, Beliën, Bruecker, Demeulemeester, and Boeck,
2013). In organizations with more than hundreds of employees, manual
scheduling becomes practically impossible with the implementation of nu-
merous practical constraints, fairness regulations and employee preferences.
With the advancement in operations research, we are now able to quickly
generate optimized schedules which allows organizations to better utilize
their resources while maintaining a fair working environment for the em-
ployed workforce.

From estimating the workload to the generation of daily schedules, work-
force scheduling in practice is performed in multiple stages, the assignment
of shifts to employees being one of the final stages in the entire process.
Recent research in personnel scheduling recommends that optimizing task
assignment to employees within shifts can lead to significant improvement in
resource utilization and service quality especially while dealing with multi-
skilled workforce and tasks that are time-bound and skill-specific. It is often
in the interest of employer organizations to generate such rosters, however,
while minimizing the number of employees/shifts to execute it. This consti-
tutes the primary objective of the shift minimization personnel task schedul-
ing problem (SMPTSP).

The SMPTSP was introduced by Krishnamoorthy, Ernst, and Baatar (2012)
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as a variant of the personnel task scheduling problem. The paper charac-
terised the problem and presented a benchmark dataset consisting of 137
instances, mathematical formulations for the problem and proposed two
heuristics based on Lagrangean relaxation. Since then, several research ar-
ticles such as Lin and Ying (2014) and Fages and Lapègue (2014) have
addressed the problem until Smet, Wauters, Mihaylov, and Berghe (2014)
proposed a heuristic that solved all the 137 benchmark instances to opti-
mality and introduced 10 harder instances. Fages and Lapègue (2014) also
introduced an instance set with comprised of instances with novel struc-
tural properties. The constructive heuristic proposed by Chandrasekharan,
Smet, and Wauters (2021) solved all the proposed instances to optimality.
Later on, Kyngäs and Nurmi (2021) presented an efficient ruin and recreate
heuristic for the problem and proposed a new set of difficult instances.

It is proven that SMPTSP is an NP-hard problem. However, such a clas-
sification only talks about the worst case complexity of the problem. The
knapsack problem is NP-hard whereas there exist efficient techniques that
can solve most of its instances to optimality. In contrast, the traveling
salesman problem, while belonging to the same complexity class, appears
empirically harder to solve. Researchers for a long time have been trying to
answer whether the experience of some NP-hard problems appearing to be
easier to solve is the result of intrinsic properties of problem or is instead
due to the lack of representation of harder areas of the instance space in its
benchmark dataset. The recent advancement in the area of instance space
analysis (Smith-Miles, 2019) however has facilitated such studies. While the
existing papers on the SMPTSP have discussed benchmark instances and
its properties and built a large benchmark dataset, a systematic study of
the instance space is missing in the literature.

The primary contribution of this paper is a detailed study of the instance
space of the SMPTSP. Extensive experiments were conducted to identify
relevant factors and test the extent of their influence in determining the
hardness of problem instances. In addition to statistical experiments, an
in-depth study of the structural properties of the problem based on graph
theory is also presented. This is of significant practical relevance since al-
gorithm performances are typically compared based on their performance
on the benchmark instances. Moreover, many existing solution techniques
tune their algorithms based on instance structure. As a result of these ex-
periments a harder and diverse set of instances for the SMPTSP have been
generated, which is one of the other major contributions of the paper. The
instance analysis presented were performed on the basis of the results of the
two best performing algorithms available for the SMPTSP. Performance of
these algorithms on the existing benchmark instances and the newly gener-
ated instances are also published in this paper.
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2 Problem definition

The SMPTSP arises when there is a need to optimally assign a multi-skilled
workforce to skill-specific tasks. An SMPTSP instance is characterised by
a set of shifts and tasks. In order to execute a certain task, some skills
are required. The skill-set of the shift determines the tasks it is capable of
executing. The schedule of these tasks are given and the aim of the SMPTSP
is to identify the smallest possible subset of shifts which can execute these
tasks.

Figure 1 represents a sample SMPTSP instance. Here, tasks and shifts are
represented as intervals in time. Tasks are numbered and the numbers writ-
ten on the shifts denotes the tasks they are qualified to execute. Note here
that all shifts are of the same time duration (24 hrs). Such an assumption
is made in order to simplify the instance structure while making it more
general in terms of its applications to different kind of scheduling problems.
One can always consider a shift as as two or more employees/shifts of similar
skill structure scheduled one after the other without any loss of generality.
Similarly, a shift that is longer than 24 hrs can be split in order to bring it
to this form.

Let the set of shifts and tasks associated with an SMPTSP instance be
denoted by W = {1, 2, ...,m} and J = {1, 2, .., n} respectively. Wj ⊂ W
represents the subset of shifts that are qualified to execute task j ∈ J .
Shifts are not allowed to multi-task. Therefore, two tasks ti, tj ∈ J which
overlap in time cannot be assigned to the same shift. Figure 2 shows how
such conflicts can be modelled as an interval graph, G = (V,E). In G,
vertices represent tasks and two tasks are connected by an edge if their
corresponding time intervals intersect and hence cannot be assigned to the
same shift. Clearly, no two tasks which are part of a clique in G can be
assigned to the same shift. More precisely, let Gw be the subgraph of G
induced by vertices Jw, the set of tasks that shift w is capable of executing.
If Cw = {K1,K2, ..,Kt} are the set of maximal cliques in Gw, no two tasks
in Ki can be assigned to the same shift.

Given the conflict graph G of the tasks of an SMPTSP instance, the problem
of identifying the smallest subset of shifts that can execute all the tasks
corresponds to the list coloring problem in interval graphs. This problem is
proven NP-hard. While finding all maximal cliques in a general graph is
an equally hard problem, the problem is polynomial-time in interval graphs.
This enables us to compute Cw efficiently and employ it in developing tight
integer programming formulation of the problem. Note here that the size
of the largest maximal clique in G is a valid lower bound for the number
of shifts required and is called the clique lower bound (CLB). The integer
programming formulation for the SMPTSP proposed by Krishnamoorthy
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Figure 1: A sample SMPTSP instance. The blue rectangles are tasks while
the white rectangles represent shifts.

Figure 2: Conflict graph of the tasks involved in the sample SMPTSP in-
stance presented in Figure 1

et al. (2012), SMPTSP-MIP, is presented below.

xjw =

{
1 if task j ∈ J is assigned to employee w ∈ W

0 otherwise
(1)

yw =

{
1 if shift w ∈ W is active
0 otherwise

(2)
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minimize:
∑
w∈W

yw (3)

subject to:
∑

w∈Wj

xjw = 1 ∀j ∈ J (4)

∑
j∈Kw

l

xjw ≤ yw ∀w ∈ W,∀Kl ∈ Cw (5)

0 ≤ yw ≤ 1 ∀w ∈ W (6)
xjw ∈ {0, 1} ∀j ∈ J,∀w ∈ W (7)

Constraints (4) ensure that exactly one shift is assigned to a task. Conflicting
tasks in maximal cliques of Gw are prevented from being assigned to the
same shift by way of Constraints (5). In addition, these constraints ensure
that the shift is counted as active if and only if it has been assigned to a
task. Constraints (6) and (7) provide the variable bounds.

3 Benchmark instances and characteristics

Currently, there exists four different instance sets for the SMPTSP. The
instance set proposed by Krishnamoorthy et al. (2012), denoted as KEB,
is composed of 137 instances with up to 420 shifts ad 2105 tasks. These
instances are characterised by their tightness and multi-skilling level aside
from their size. Tightness (T) of an instance is defined as the percentage
of total task lengths with respect to the total shift duration. Multi-skilling
level (MSL) of an instance is defined as the average of skill-levels of the
shifts involved, where skill-level of a shift is defined as the percentage of
tasks they are qualified to execute. Krishnamoorthy et al. (2012) observes
that instances with low tightness values are easier to solve.

A series of experiments on the empirical hardness of instances conducted
by Smet et al. (2014) shows that instances with MSL around 33% are often
harder to solve. In addition, they show that low values of average task dura-
tion (TD) is another factor that makes instances harder to solve. As a result
of these experiments, they introduced 10 challenging instances, denoted as
SWMB. In both these instance sets, the optimal solution equals the CLB. In
other words, in these instances, shift skill-structure does not seem to signif-
icantly influence the shift utilization. Fages and Lapègue (2014) introduced
100 new instances, denoted as FL, such that the optimal solution of these
instances do not coincide with the CLB. Later, Solyali (2016) came up with
an efficient lower bounding technique.

A fourth set of benchmark instances, denoted as KN, was introduced by
Kyngäs and Nurmi (2021). This paper discusses various instance param-
eters that may influence the instance hardness and the KN instances are

5



designed such that they are significantly more challenging and structurally
different compared to the benchmark data set that existed then. The fol-
lowing subsection explores instance structure in detail.

3.1 Benchmark datasets and their characteristics

Size of the instance, which is a combination of the number of shifts and tasks
associated with the instance, alongside various other factors are known to
impact the difficulty of a given instance. Table 1 summarizes basic instance
properties. While very large sizes are often associated with longer runtimes,
what exactly contributes to the hardness of the instance is still unknown.
The literature has shown that high tightness, low mutli-skilling level and
shorter task lengths have a positive correlation with instance hardness. In
this study, we explore properties such as average task length and maximum
task length of an instance in addition.

Data set KEB FL SWMB KN KNC

size 137 100 10 30 70
—W— 22-420 60-950 44-153 20-500 300
—J— 40-2105 70-1600 258-1577 105-2473 1157-6170

Table 1: Summary of instance properties of benchmark instances

From a graph theoretic perspective, the SMPTSP corresponds to list col-
oring of interval graphs. When viewed purely as a coloring problem, the
length of tasks does not correspond directly to any standard graph charac-
teristics. However, having larger or shorter graphs could in result in large or
small graph degrees, which in turn could have a significant impact. In order
to test this, the average and maximum task length along with the average
degree of the underlying conflict graph G are studied. One must note that
two conflicting tasks in G are not in actual conflict unless there are shifts
that are skilled to execute both. In order to study this, a new conflict graph
Gs on tasks is considered, where two tasks with overlapping time intervals
are connected by an edge if and only if there exist at least one shift qualified
to execute both the tasks.

Figure 3 presents an overview of instance characteristics based on the param-
eters discussed. Clearly, the newly generated KN30 and KNC70 instances
differ from the existing datasets by their relatively higher values of tight-
ness, average and maximum task lengths and the degree of G and Gs. It is
interesting to observe that average degree of the underlying conflict graphs
G and Gs do not always follow the trends in the distribution of average
task length values. Specifically, the KNC70 instances exhibit higher average
degree values of G ans Gs despite having lower average task length values.
This could be a result, however, of the presence of extremely long tasks, as
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one can observe from the large maximum task length values.

Figure 3: Benchmark datasets and their characteristics

Since many real-world instances are very large in size, we also particularly
explore what makes some instances hard for decomposition-based algorithms
and heuristics which involves solving parts of the problem locally. Figure 4
represents two instances of contrasting skilling structure. While such high
decomposability can usually be associated with very low multi-skilling, it is
important to note that even with moderately low values of multi-skilling,
such hard-to-decompose structures are possible. What makes this more in-
triguing is that no single instance characteristic can sufficiently capture the
complexity of the underlying graph structure. The presence of very large
maximal cliques usually render the instance difficult to decompose, and this
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Figure 4: Graphs that represent the skilling structure of two SMPTSP in-
stances. Here, red nodes represent employees and green nodes represent
tasks. An employee node is adjacent to a task node if the employee is skilled
to perform the task.

information is partially captured by the average degree of G and Gs. How-
ever, one must note that while the size of the maximal clique is a valid and
good lower bound for the chromatic number of a graph, it is possible to gen-
erate triangle-free graphs of very large chromatic number, Mycielsky graphs
being an excellent example. Along these lines, we computed the transitivity
values of underlying graphs G and Gs for all the instances. However, the
transitivity values did not show much variability across the instances.

4 Computational Experiments

Instance space analysis being the major aim of the paper, extensive experi-
mentation and analysis have been carried out in order to test the influence
of the instance characteristics on algorithm performance. For this purpose,
performance of two state of the art algorithms for the TSP, GFA (Kyn-
gäs and Nurmi, 2021) and CMH (Chandrasekharan et al., 2021) has been
utilized. Note here that CMH is a decomposition-based technique. Ex-
periments were performed on 4 threads of 11th Gen Intel(R) Core(TM)
i9-11950H @ 2.60GHz machine and 32 GB RAM with a time limit set to 2
hrs.

The performance of CMH and GFA on the new instances KN30 and KNC70
are presented in tables 2 and 3. CMH finds 49 feasible solutions and 36
optimal solutions whereas GFA finds 61 feasible solutions out of which 48
are optimal.
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Table 2: Results of CMH and GFA on the KN30 instances. LB denotes
lower bound.

Instance LB CMH Time(s) GFA Time(s)

kn01 20 20 0.3 20 1
kn02 25 NaN 0.13 25 1
kn03 30 NaN 1.88 30 1
kn04 35 35 2.42 35 2
kn05 40 40 0.85 40 1
kn06 45 45 0.36 45 1
kn07 50 NaN 3.79 50 5
kn08 55 55 4.26 55 1
kn09 60 60 2.78 60 1
kn10 65 65 30.71 65 1
kn11 70 NaN 4.45 70 1
kn12 75 75 3.46 75 1
kn13 80 NaN 5.34 80 2
kn14 85 NaN 56.31 85 37
kn15 100 100 9 100 10
kn16 110 110 124.15 110 14
kn17 120 120 13.1 120 1
kn18 130 130 11.21 130 6
kn19 140 140 8.86 140 1
kn20 149 149 205.32 149 35
kn21 160 160 6,767.65 160 2
kn22 180 180 354.36 180 51
kn23 199 200 2,477.4 199 1,432
kn24 239 239 321.68 239 9
kn25 279 280 7,200 279 13
kn26 309 NaN 7,200 315 7,200
kn27 356 356 197.89 356 24
kn28 399 399 376.75 399 24
kn29 443 447 7,200 445 7,200
kn30 488 496 7,200 492 7,200

4.1 Instance space analysis

In this section, the results of the CMH and GFA runs are plotted against
the instance characteristics described in Section 3.1 in an attempt to ex-
plore their influence in algorithm performance trends. Figures 5, 6, 7, 8
and 9 plots the trends in the algorithm performances with respect to the
instance characteristics. As observed by other papers in the literature, low
multi-skilling values seem to be associated with high gaps and algorithm
runtimes. In contrast, lower average task length values, which is often con-
sidered as a characteristic of difficult instances, do not seem to significantly
influence algorithm performances. The most significant observation from
these experiments is the correlation of average degree of G and Gs with
CMH and GFA algorithm runtimes.
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Table 3: Results of CMH and GFA on the KNC70 instances. LB denotes
lower bound.

Inst LB CMH T(s) GFA T(s)

knc00 283 285 267.83 283 2,772
knc10 285 290 49.29 285 295
knc11 287 288 82.09 287 15
knc12 285 286 100.2 285 94
knc13 287 289 134.18 287 24
knc14 285 285 174.06 285 8
knc15 287 289 524.9 287 89
knc16 284 286 724.46 284 198
knc17 285 286 1,806.62 285 573
knc18 288 288 2,765.56 288 149
knc19 284 NaN 7,200 285 7,200
knc20 285 287 729.75 285 20
knc21 287 289 763.49 287 3
knc22 284 285 483.38 284 42
knc23 285 287 315.91 285 29
knc24 287 289 245.35 287 50
knc25 287 289 136.13 287 38
knc26 285 290 292 285 1,278
knc27 283 291 185.01 289 7,200
knc28 288 298 186.67 294 7,200
knc29 285 NaN 7,200 300 7,200
knc30 262 263 185.33 262 34
knc31 264 266 196.19 264 102
knc32 272 274 234.69 272 13
knc33 277 279 180.31 277 9
knc34 282 282 177.06 282 22
knc35 290 291 253.55 290 715
knc36 296 297 354.73 296 143
knc37 298 299 1,456.34 299 7,200
knc38 300 NaN 7,200 NaN 7,200
knc39 300 NaN 7,200 NaN 7,200
knc40 284 286 276.78 284 887
knc41 286 287 282.51 286 56
knc42 285 286 155.14 285 87
knc43 283 284 295.73 283 60

Inst LB CMH T(s) GFA T(s)

knc44 284 285 303.45 284 34
knc45 285 287 332.01 285 235
knc46 282 285 182.01 283 7,200
knc47 285 287 233.87 285 119
knc48 285 286 357.75 285 110
knc49 283 286 278.01 283 928
knc50 287 297 697.09 289 7,200
knc51 285 298 21.19 285 588
knc52 286 NaN 7,200 NaN 7,200
knc53 286 286 1,273.46 286 23
knc54 289 291 194.67 289 107
knc55 300 300 27 300 2
knc56 287 NaN 7,200 300 7,200
knc57 284 286 396.28 284 3
knc58 286 286 148.27 286 42
knc59 300 300 54.38 300 2
knc60 300 300 9.93 300 3
knc61 285 290 351.79 286 7,200
knc62 300 300 8.14 300 4
knc63 286 288 131.14 286 2,330
knc64 288 288 2,240.72 288 37
knc65 284 NaN 7,200 287 7,200
knc66 284 284 6,579.75 284 57
knc67 300 300 942.82 300 38
knc68 300 300 1,720.46 300 52
knc69 300 300 2,042.26 300 3
knc70 300 300 68.8 300 7,200
knc71 300 NaN 7,200 NaN 183
knc72 300 300 2,124.95 300 2,762
knc73 300 NaN 7,200 NaN 7,200
knc74 300 300 7,200 300 34
knc75 300 NaN 7,200 NaN 7,200
knc76 300 NaN 7,200 NaN 7,200
knc77 300 NaN 7,200 300 273
knc78 300 NaN 7,200 NaN 7,200
knc79 300 NaN 7,200 NaN 7,200

5 Conclusion

This paper presented an attempt to identify key SMPTSP instance charac-
teristics from an algorithmic perspective and graph coloring problem per-
spective. These instance characteristics were analysed for their influence in
determining the hardness of the problem instances based on the performance
of two state of the art algorithms available for the problem. Based on the
inference, a challenging dataset has been generated and the performance of
GFA and CMH algorithms on this dataset has been reported. Even though
the influence of individual factors on the instance hardness has been studied,
it could be the combination of multiple factors that may explain why certain
instances are challenging than the others. This could be an interesting area
for future study.
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Figure 5: Influence of multiskilling on CMH and GFA performance
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Figure 8: Influence of average degree of G, on CMH and GFA performance
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Figure 9: Influence of average degree of Gs, on CMH and GFA performance

15



M. Krishnamoorthy, A. T. Ernst, and D. Baatar. Algorithms for large
scale shift minimisation personnel task scheduling problems. European
Journal of Operational Research, 219:34–48, 5 2012. ISSN 03772217. doi:
10.1016/j.ejor.2011.11.034.

Nico Kyngäs and Kimmo Nurmi. The extended shift minimization personnel
task scheduling problem. volume 26, pages 65–74. PTI, 9 2021. doi:
10.15439/2021f35.

Shih Wei Lin and Kuo Ching Ying. Minimizing shifts for personnel
task scheduling problems: A three-phase algorithm. European Journal
of Operational Research, 237:323–334, 8 2014. ISSN 03772217. doi:
10.1016/j.ejor.2014.01.035.

Pieter Smet, Tony Wauters, Mihail Mihaylov, and Greet Vanden Berghe.
The shift minimisation personnel task scheduling problem: A new hy-
brid approach and computational insights. Omega (United Kingdom), 46:
64–73, 7 2014. ISSN 03050483. doi: 10.1016/j.omega.2014.02.003.

K. Smith-Miles. Matilda, 2019. URL https://matilda.unimelb.edu.au/
matilda/showMobileHomePage.

Ouz Solyali. The shift minimization personnel task scheduling problem:
An effective lower bounding procedure. Hacettepe University Journal of
Economics and Administrative Sciences, 34:115–132, 2016.

16

https://matilda.unimelb.edu.au/matilda/showMobileHomePage
https://matilda.unimelb.edu.au/matilda/showMobileHomePage

	Introduction
	Problem definition
	Benchmark instances and characteristics
	Benchmark datasets and their characteristics

	Computational Experiments
	Instance space analysis

	Conclusion

