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Abstract The vertex colouring problem is one of the most widely studied and pop-
ular problems in graph theory. In light of the recent interest in hybrid methods
involving mathematical programming, this paper presents an attempt to design a
matheuristic approach for the problem. A decomposition-based approach is intro-
duced which utilizes an integer programming formulation to solve subproblems to
optimality. A detailed study of two different decomposition strategies, vertex-based
and colour-based, is discussed. The impact of algorithm design parameters on the
decompositions used and their influence on final solution quality is explored. In ad-
dition to integer programming, a constraint programming is also employed to solve
the subproblems.

Keywords Vertex colouring ⋅ matheuristic ⋅ decomposition
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1 Introduction

The vertex colouring problem (VCP) seeks to assign colours to vertices of a graph
such that no two adjacent vertices are assigned the same colour. Initially studied as
a problem on planar graphs, the problem has been generalized over general graphs
and represents a large share of the graph theory literature given its widespread ap-
plications. Problems which can be modeled as the assignment of conflicting elements
of a set to distinct subsets such as scheduling (Leighton, 1979), timetabling (Babaei,
Karimpour, and Hadidi, 2015), frequency assignment (Aardal, Van Hoesel, Koster,
Mannino, and Sassano, 2007) and register allocation (Chow and Hennessy, 1990),
are some of the major areas where there exist practical applications of the VCP.

The VCP is an example of a problem which is easy to define, yet difficult to
solve. Determining the smallest number of colours required to colour a graph is
an NP-hard problem (Garey and Johnson, 1979). This inherent difficulty of the
problem means that only certain kinds of graph are capable of being solved by
the best mathematical models formulated for the VCP (Méndez-Díaz and Zabala
(2006), Méndez-Díaz and Zabala (2008), Malaguti, Monaci, and Toth (2011)). These
exact methods cease to work for random graphs of more than 100 vertices. However,
most of the real world applications require colouring graphs on thousands of vertices,
thereby motivating the need for efficient heuristic strategies. Decades of research have
contributed multiple models and performance guarantees for the VCP. Despite these
achievements, the problem continues to fascinate researchers in this area due to its
theoretical complexity and the constantly growing number of practical applications
that demand colouring larger graphs.

Aside from the exact techniques available, greedy constructive heuristics, lo-
cal search heuristics and metaheuristics constitute much of the literature in ver-
tex colouring. A bibliography is available at https://imada.sdu.dk/~marco/gcp/.
Malaguti and Toth (2010) provide a useful survey on the various exact and heuristic
algorithms developed for the VCP. Most of the high performing algorithms for the
VCP such as Malaguti, Monaci, and Toth (2008), Funabiki and Higashino (2000),
Galinier and Hao (1999) are metaheuristic in nature. Most of them operate by search-
ing for a colouring utilizing a given number of colours. These algorithms are inter-
esting for the multiple search strategies that are used in combination to design an
efficient algorithm. This suggest that hybrid methods are efficient in colouring some
of the very large random graphs. However, it must be noted that metaheuristic al-
gorithms require much longer runtimes compared to local search and simple greedy
constructive heuristics, but generates solutions of better quality. Faster algorithms
are still relevant as vertex colouring appear as a subroutine in various practical ap-
plications which need to be executed within a short runtime. As implied, the trade
off between algorithm runtime and solution quality often decides the choice of vertex
colouring algorithm to be used for a particular problem.

The major contribution of this paper is that it presents one of the first attempts
to design and test a matheuristic approach for the VCP. Matheuristics are meth-
ods which hybridize mathematical programming and heuristics. The recent success
of matheuristic strategies in scheduling applications which are, at their most fun-
damental level, graph colouring problems has motivated this study. By combining
mathematical programming and heuristics, the paper aims at designing a vertex
colouring heuristic that can generate high quality solutions within a reasonable run-
time. The heuristic part tested in the present work extends the idea of general greedy

https://imada.sdu.dk/~marco/gcp/
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constructive heuristics available for vertex colouring such as the smallest last colour-
ing, recursive largest first heuristic and DSATUR (Matula, Marble, and Isaacson
(1972), Matula et al. (1972), Leighton (1979)). It is well known that greedy colour-
ing heuristics are highly sensitive towards the initial order in which vertices are
coloured or the order in which colours are utilized. Therefore, extensive experimen-
tation has been conducted to study the influence of these properties on the proposed
matheuristic for the VCP.

The outline of the paper is as follows. Section 2 briefly introduces the problem
and the terminology. The matheuristic strategy proposed for the VCP is introduced
in Section 3, while the related experiments are summarized in Section 4. Section
?? presents some coefficient matrix illustrations. Section 5 then ends this paper by
concluding and offering future research possibilities.

2 The vertex colouring problem

Let 𝐺 = (𝑉 , 𝐸) denote a graph on a finite vertex set 𝑉 and edge set 𝐸, whose
cardinalities are denoted by n and m respectively. In this paper, 𝐸 is assumed to be
the collection of unordered pairs 𝐸 = {{𝑣, 𝑣′}|𝑣, 𝑣′ ∈ 𝑉 , 𝑣 ≠ 𝑣′}, thereby limiting the
problem to finite simple graphs (no loops or multiple edges). Any two vertices 𝑣 and
𝑣′ said to be adjacent if there exists an edge {𝑣, 𝑣′} ∈ 𝐸. A 𝑘-colouring of 𝐺 is the
assignment of 𝑘 colours to elements of 𝑉 such that no two adjacent vertices share
the same colour. The smallest 𝑘 for which a 𝑘-colouring exists for 𝐺 is defined to be
the chromatic number of G, denoted by 𝜒𝐺.

A set 𝑉 ′ ⊆ 𝑉 is a clique of 𝐺 if all vertices in 𝑉 ′ are adjacent to each other.
Clearly, any two vertices belonging to a clique cannot be assigned the same colour.
A maximal clique of 𝐺 is a clique that is not a proper subset of any other clique of 𝐺.
Thus, the size of a maximal clique is a valid lower bound for the chromatic number
of 𝐺. A set 𝑉 ′ ⊆ 𝑉 is said to be an independent set if no vertices in 𝑉 ′ are adjacent.
It is easy to see that the set of vertices that are assigned the same colour form an
independent set of 𝐺. Independent sets corresponding to each colour are referred to
as colour classes. Given a full or partial colouring of 𝐺, the saturation degree of a
vertex is defined as the number of colours to which it is adjacent.

3 Constructive Matheuristics

The present work applies a decomposition-based approach which utilizes power-
ful exact techniques to solve subproblems to optimality and thus can be called a
matheuristic (Maniezzo, Stützle, and Voß, 2010). More specifically, this approach
adapts the constructive matheuristic (CMH) strategy introduced by Smet, Wauters,
Mihaylov, and Berghe (2014) and extends it. The approach draws motivation from
the method-based heuristics discussed in ?. Given a well defined problem 𝑃 and an
exact method that can solve the problem if the problem size were small, the present
approach designs a heuristic directly based on the capability of the exact method
available and the complexity of the problem. Similar to local search heuristics, a finite
sequence of easier problems (𝑃1, 𝑃2, ..., 𝑃𝑁) are solved to generate a corresponding
sequence of solutions (𝑠0, 𝑠1, ..., 𝑠𝑁) and a feasible solution 𝑠 for 𝑃 is computed as
a function of these solutions. Depending on the algorithm design, problems 𝑃𝑖 in
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ℙ = (𝑃1, 𝑃2, ..., 𝑃𝑁) can be defined as a function of the decision space 𝑋 of the
problem 𝑃 or its subspaces or both. 𝑃𝑖 may also be defined as a function of other
problems in ℙ.

Given a large scale problem 𝑃 , the proposed CMH approach utilizes a decompo-
sition strategy to arrive at a sequence of simpler problems ℙ, called subproblems or
blocks of the CMH. While the overall CMH approach is general in nature, the present
approach is designed to tackle very large mathematical programming formulation
models, especially integer programming models. Given the integer programming for-
mulation of a large problem 𝑃 , denoted by ℱ, the problem 𝑃𝑖 solved in block 𝑖,
is arrived at by decomposing its variables. In each block, an integer programming
problem that involves the variables associated to the block is solved. The precise
problem that is solved in each block may be defined based on the decomposition
strategy utilized, the nature of the variables in the block and the characteristics of
the original problem at hand. Being a constructive method, the CMH also requires
an order for solving blocks to operate.

Without loss of generality, let us assume that the blocks are solved in the order:
1, 2, ..., 𝑁 . In each block 𝑖, the CMH algorithm solves problem 𝑃𝑖 and fixes the assign-
ments of its variables. However, for the CMH to be able to produce feasible solutions
for the original problem 𝑃 , problem 𝑃𝑖+1 in block 𝑖 is solved such that the assignments
do not violate constraints in the original problem 𝑃 involving variables of which as-
signments are fixed in blocks 1, 2, ..., 𝑖. In other words, in each block 𝑖+1, CMH gen-
erates a modified problem 𝑃 ′

𝑖+1 from problem 𝑃𝑖+1 by adding additional constraints
such that the assignments fixed in block 𝑖 + 1 do not conflict the assignments made
in blocks 1, 2, ..., 𝑖. Thus, a new sequence subproblems ℙ′ = (𝑃 ′

1 = 𝑃1, 𝑃 ′
2, ..., 𝑃 ′

𝑁)
and a corresponding sequence of solutions 𝑠′ = (𝑠1, 𝑠′

2, ..., 𝑠′
𝑁) can be obtained such

that the solution of blocks are not conflicting. Proceeding in this manner, CMH
constructively fixes assignments of all the variables in such a way that none of the
constraints in 𝑃 are violated.

The major challenge while designing the blocks is to ensure that the assignment
fixings made in steps 1, ..., 𝑖 do not result in block 𝑃𝑖+1 being infeasible. Therefore, the
decomposition strategy and the order of solving blocks are some of the key factors
that affect the efficiency of the CMH approach. In order to navigate the CMH,
the following CMH design parameters introduced in Chandrasekharan, Toffolo, and
Wauters (2019) are utilized.

1. Block size (𝜂): This parameter defines the size of subproblems/blocks and often
significantly influences algorithmic runtime.

2. Overlap (𝜃): This parameter allows blocks to share some variables instead of
being completely disjoint. 𝜃 denotes the extent of overlap between consecutive
blocks.

A CMH configuration is therefore represented by the tuple (𝜂, 𝜃). Figure 1 illustrates
the overall CMH strategy utilized in this paper and the design parameters. Depending
on the solutions of previously solved subproblems, additional constraints may need
to be added to the blocks to ensure feasibility of all subproblems. The objective
functions utilized in the blocks may also be modified in order to navigate the CMH
to produce feasible solutions for the full problem 𝑃 and to improve CMH solution
quality. Given a block 𝑖, its definition and the precise optimization problem it solves
is realized by means of its block objective function 𝑍𝑖(𝜂, 𝜃).
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previous block

current block 𝜂
𝜃

Fig. 1: An overview of the general CMH strategy. Blue rectangles represent subprob-
lems (blocks) in the CMH strategy and the solid window represents current block.
The gray rectangle represents the block previously solved of which assignments are
already fixed.

The present CMH approach for the VCP utilizes the simple assignment-based IP
formulation (VCP-ASS) of the VCP. Let 𝐻 denote the set of colours. The algorithm
starts with a total of 𝑛 colours, |𝐻| = 𝑛. Variables 𝑥𝑖ℎ decide whether colour ℎ is
assigned to vertex 𝑖 while variables 𝑦ℎ decide whether colour ℎ ∈ 𝐻 is utilized or
not.

𝑥𝑖ℎ = {1 if vertex 𝑖 ∈ 𝑉 is assigned to colour ℎ ∈ 𝐻
0 otherwise

(1a)

𝑦ℎ = {1 if colour ℎ ∈ 𝐻 is used
0 otherwise

(1b)

The model can then be formulated as follows:

minimize:
𝑛

∑
ℎ=1

𝑦ℎ (1c)

subject to:
𝑛

∑
ℎ=1

𝑥𝑖ℎ = 1 ∀𝑖 ∈ 𝑉 (1d)

𝑥𝑖ℎ + 𝑥𝑗ℎ ≤ 𝑦ℎ ∀(𝑖, 𝑗) ∈ 𝐸, ℎ = 1, … , 𝑛 (1e)
𝑥𝑖ℎ ≤ 𝑦ℎ ∀𝑖 ∈ 𝑉 , ℎ = 1, … , 𝑛 (1f)

𝑦ℎ+1 ≤ 𝑦ℎ ∀𝑖 = 0, … , 𝑛 − 1 (1g)
𝑥𝑖ℎ ∈ {0, 1} ∀𝑖 ∈ 𝑉 , ℎ = 1, … , 𝑛 (1h)
𝑦ℎ ∈ {0, 1} ∀ℎ = 1, … , 𝑛 (1i)

Constraints 1d ensure that vertices are assigned exactly one colour, while Constraints
1e prevent adjacent vertices from being assigned the same colour. Constraints 1f
ensure that the value of 𝑥𝑖ℎ is bounded even when the graph has isolated nodes.
Constraints 1g are introduced to break the symmetry between used and un-used
colours.
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Starting with the VCP-ASS formulation, one could arrive at numerous CMH ap-
proaches for the VCP based on the decomposition strategy employed. The following
subsections introduce two different CMH approaches for the VCP, the colour-based
CMH and the vertex-based CMH. The colour-based CMH aims at colouring the
graph with a colour or group colours in each iteration and stops when the graph
is fully coloured. In contrast, the vertex-based CMH aims at colouring parts of the
graph until the graph is fully coloured. The approaches are inspired from common
decomposition strategies applied in real-world problems which are vertex colouring
problems in its fundamental nature. For example, in an employee-task scheduling
problem, employees correspond to colours while tasks correspond to vertices. In such
a problem, a constructive approach that proceeds by making optimal assignments
for an employee or group of employees at a time corresponds to a colour-based CMH
approach. Whereas, a constructive approach that assigns a task or group of tasks
optimally to employees in its iterations corresponds to a vertex-based CMH. Similar
comparisons can be made across many such problems. An important class of prob-
lems to consider are time-based scheduling problems. In such problems, a common
decomposition approach employed is to split the time-horizon of the problem such
that the subproblems contain variables concerning one time or a period of time.
When viewed as a vertex colouring problem, note here that the decomposition is
happening in the vertices of the graph and therefore corresponds to a vertex-based
CMH approach. In this paper, we aim to explore how both the approaches com-
pare and thereby make general conclusions on which strategy is more suitable for
designing CMH algorithms for vertex colouring and vertex colouring-like problems.
This study is inspired by a similar comparison of employee-based and time-based de-
compositions employed in a CMH approach developed for a task scheduling problem
(Chandrasekharan, Smet, and Wauters, 2020).

3.1 Colour-based CMH

The colour-based CMH (CBC) employs a decomposition on the 𝑦ℎ variables of the
VCP-ASS formulation to arrive at its blocks. Associated with each block is a set of
variables of type 𝑦ℎ. In other words, a partition 𝑏1, 𝑏2, ..., 𝑏𝑁 , ⊔𝑁

𝑖=1𝑏𝑖 = 𝐻 is utilized
to define the blocks of CBC. Each 𝑃𝑖 solves for the maximal subgraph that can be
coloured by variables of type 𝑦ℎ in the block. The following is the MIP formulation
defining block 𝑃𝑘:

𝑥𝑖ℎ = {1 if vertex 𝑖 ∈ 𝑉 is assigned to colour ℎ ∈ 𝑏𝑘
0 otherwise

(2a)

𝑦ℎ = {1 if colour ℎ ∈ 𝑏𝑘 is used
0 otherwise

(2b)
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The model can then be formulated as:

maximize: ∑
ℎ∈𝑏𝑘

∑
𝑖∈𝑉

𝑥𝑖ℎ (2c)

subject to: ∑
ℎ∈𝑏𝑘

𝑥𝑖ℎ ≤ 1 ∀𝑖 ∈ 𝑉 (2d)

𝑥𝑖ℎ + 𝑥𝑗ℎ ≤ 𝑦ℎ ∀(𝑖, 𝑗) ∈ 𝐸, ℎ ∈ 𝑏𝑘 (2e)
𝑥𝑖ℎ ≤ 𝑦ℎ ∀𝑖 ∈ 𝑉 , ℎ ∈ 𝑏𝑘 (2f)

𝑦ℎ+1 ≤ 𝑦ℎ ∀ℎ ∈ {𝑏𝑘1
, … , 𝑏𝑘|𝑏𝑘|

} (2g)

𝑥𝑖ℎ ∈ {0, 1} ∀𝑖 ∈ 𝑉 , ℎ ∈ 𝑏𝑘 (2h)
𝑦ℎ ∈ {0, 1} ∀ℎ ∈ 𝑏𝑘 (2i)

After solving the first block, assignment of variables 𝑦ℎ, ℎ ∈ 𝑏1 and the assignments
of variables 𝑥𝑖ℎ, ℎ ∈ 𝑏1 such that 𝑥𝑖ℎ = 1 are fixed. Now, the problem to be solved in
the next block 𝑃2 is arrived at by adding constraints of type 1e to ensure that the
new assignments do not conflict the variables fixed in the previous block. Similarly,
problems 𝑃 ′

𝑖 s to be solved in each block are generated. The final block is re-optimized
with the original objective of minimizing the number of colours. The CMH stops when
all vertices are coloured.

3.2 Vertex-based CMH

The vertex-based CMH (VBC) defines blocks by way of groups of vertices. Let
𝑏1, 𝑏2, ..., 𝑏𝑁 , ⊔𝑁

𝑖=1𝑏𝑖 = 𝑉 be a partition of the vertices of the graph 𝐺 = (𝐸, 𝑉 ).
Based on this decomposition, block 𝑏𝑘 colours the subgraph induced by vertices in
𝑏𝑘 to optimality. Let 𝑏𝑘 denote the current block and 𝐸𝑏𝑘

denote the edges of the
induced subgraph of vertices in blocks 𝑏1, … , 𝑏𝑘. The MIP formulation 𝑃𝑘 solved in
block 𝑏𝑘 can now be formulated as follows.

𝑥𝑖ℎ = {1 if vertex 𝑖 ∈ 𝑏𝑘 is assigned to colour ℎ ∈ 𝐻
0 otherwise

(3a)

𝑦ℎ = {1 if colour ℎ ∈ 𝐻 is used
0 otherwise

(3b)

minimize:
𝑛

∑
ℎ=1

𝑦ℎ (3c)

subject to:
𝑛

∑
ℎ=1

𝑥𝑖ℎ = 1 ∀𝑖 ∈ 𝑏𝑘 (3d)

𝑥𝑖ℎ + 𝑥𝑗ℎ ≤ 𝑦ℎ ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑘
, ℎ = 1, … , 𝑛 (3e)

𝑥𝑖ℎ ≤ 𝑦ℎ ∀𝑖 ∈ 𝑏𝑘, ℎ = 1, … , 𝑛 (3f)
𝑦ℎ+1 ≤ 𝑦ℎ ∀ℎ = 1, … , 𝑛 (3g)

𝑥𝑖ℎ ∈ {0, 1} ∀𝑖 ∈ 𝑏𝑘, ℎ = 1, … , 𝑛 (3h)
𝑦ℎ ∈ {0, 1} ∀ℎ = 1, … , 𝑛 (3i)
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(a) Vertex-based CMH (b) Colour-based CMH

Fig. 2: The CBC and VBC strategies. Solid rectangles represent blocks and gray
windows correspond to blocks previously solved.

Once block 𝑖 is solved, the values assumed by variables of type 𝑥𝑖ℎ and non-zero
assignments of variables of type 𝑦ℎ in the block are fixed. The subproblem 𝑃𝑖+1 is
defined by adding Constraints of type 1e to ensure that the solution do not conflict
the assignments fixed in previous blocks. Figure 2 illustrates the CBC and the VBC
strategies.

A closer look at the VBC approach reveals that the VBC relaxes one or more
constraints of the VCP-ASS formulation for the VCP in order to arrive at subprob-
lems. Each subproblem 𝑃𝑖 is arrived at by relaxing Constraints of type 1e and 1d
which involves variables which are not from the block 𝑖. Hence, problems in ℙ are
relaxations of problem 𝑃 and, as a result, are guaranteed not to be any harder than
𝑃 . If 𝕊 = {𝑆1, 𝑆2, ..., 𝑆𝑁} denotes the set of feasible solutions of subproblems in ℙ, it
is clear that the set of feasible solutions of 𝑃 , denoted by 𝑆, is contained in all 𝑆𝑖 ∈ 𝕊
(see Figure 3). Much of the research presented in this paper concerns arriving at a
suitable decomposition strategy and in navigating the CMH such that the solution
𝑠 constructed for 𝑃 is as close to the global optimum as possible.

Fig. 3: Solution space of subproblems of the VBC

Given a subproblem 𝑃𝑖 a new subproblem 𝑃 ′
𝑖 is defined such that the so-

lution of 𝑃 ′
𝑖 does not conflict the assignments fixed after solving 𝑃 ′

1, ..., 𝑃 ′
𝑖−1. If



10

𝕊′ = {𝑆′
1, 𝑆′

2, ..., 𝑆′
𝑁} denote sets of feasible solutions of subproblems in ℙ′, it is

clear that 𝑆′
𝑖 ⊆ 𝑆𝑖 ∩ 𝑆𝑖−1 ∩ 𝑆𝑖−2 ∩ ⋯ ∩ 𝑆1 as shown in Fig 4. Note here that if 𝑃 ′

𝑁 is
feasible, the solution of the last subproblem 𝑠′

𝑁 must be a feasible solution for the
problem P.

Fig. 4: Solution space of subproblems of the VBC

The proposed general CMH strategy falls in the category of successive augmenta-
tion techniques discussed in Johnson, Aragon, McGeoch, and Schevon (1991). Such
techniques begin with a feasible partial colouring of the graph and then progressively
extend it, examples of which include greedy colouring heuristics such as DSATUR
(Brélaz, 1979) and recursive largest first or RLF (Leighton, 1979). DSATUR colours
vertices one by one whereas RLF iteratively construct colour classes - groups of ver-
tices that can be coloured by the same colour. The general CMH strategy employed
in this paper can be interpreted as a generalization of these classical colouring heuris-
tics. Rather than colouring single vertices or isolating a single colour class, vertex-
based CMH optimally colours subgraphs whereas the colour-based CMH isolates a
block of colour classes by solving for it mathematically. It is worth noting that in
case of the colour-based CMH, subproblems are attempting to generate maximal
independent sets mathematically and therefore might require very long computation
times for certain graph classes, as opposed to RLF where it is done heuristically.

Johnson et al. (1991) and Matula et al. (1972) studied the influence of the order
in which vertices are coloured on final solution quality. Some heuristics utilize a
fixed static ordering of vertices, whereas some change this ordering dynamically as
the algorithm proceeds. Among static colourings, it is proven that the smallest last
(SL) ordering yields the best performance when implemented in a greedy colouring
heuristic that colours one vertex at a time. The random vertex-based CMH (RVC)
is produced by adapting a random order for colouring vertices in the vertex-based
CMH. On adapting the SL ordering, the SL-based CMH (SLC) is produced. In
addition, another approach called the DSATUR-SL based CMH (DSC) is designed
to utilize a dynamic ordering as in the DSATUR heuristic. In this CMH approach,
the first block is composed of 𝜂 vertices from the SL ordering. Once this block is
solved, elements of the next block are selected such that it is composed of uncoloured
vertices with the first 𝜂 largest saturation degrees in the partially coloured graph.
Ties are broken utilizing the SL order.
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Table 1: Performance comparison of baseline algorithms VCP-ASS, CBC and RVC

VCP-ASS RVC(1,0,0) CBC(1,0,0)
Number of feasible solutions 74 104 116
Number of best known solutions 48 35 45
Average calculation time(s) 2718.36 917.08 569.17
%Gap - average 3100.82 1103.59 521.17

4 Computational Study

Experiments are conducted on four threads of an Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60GHz computer running Ubuntu 16.04.2 LTS. The CMH algorithm was
coded in Java and used Gurobi 8.1 to solve blocks. The DIMACS10 vertex-colouring
benchmark instances were utilized in the computational study and are available at
http://www.cc.gatech.edu/dimacs10/. The benchmark time limit is considered
to be 3600s.

From Table 1 it is clear that VCP-ASS, being the IP formulation, is capable
of solving only 48 instances of the 131 benchmark instances. When the number
of vertices is above 500, the method fails or exhibits poor performance, something
which, again, justifies the need for powerful heuristics. The performance of CBC and
RVC for 𝜂 = 1 are also summarized for comparison purposes. Since RVC utilizes a
random order of vertices, the results are averaged over 10 runs. Here, one colour or
one vertex is considered per block. If the runtime exceeds the benchmark time limit,
the program outputs the number of vertices (𝑛) as the result. %Gap is calculated
with respect to the best known solution available in the literature for a particular
instance. In order to develop an efficient CMH for the VCP, the impact of CMH
design parameters 𝜂 and 𝜃 on all its variants have been tested. Table 2 presents a
list of different algorithms tested in this study.

Table 2: The different algorithms tested for the VCP.

Algorithm Description
VCP-ASS IP formulation of the VCP (See Equations 1)

CBC Color-based CMH; blocks are subsets of colours
VBC Vertex-based CMH; blocks are subsets of vertices
RVC A VBC that employs a random ordering for vertices
SLC A VBC that employs the SL-based ordering for vertices
DSC A VBC that employs the DSATUR-based dynamic ordering for vertices
SLC’ An SLC that utilizes lower bounds from a greedy colouring heuristic
DSC’ A DSC that utilizes lower bounds from a greedy colouring heuristic

SLC’-400 SLC’ when implemented with a runtime limit of 400s
DSC’-400 DSC’ when implemented with a runtime limit of 400s
SLC’-CP SLC’ with its blocks being solved using a CP formulation
DSC’-CP DSC’ with its blocks being solved using a CP formulation

SLC’-CP-400 SLC’-CP when implemented with a runtime limit of 400s
DSC’-CP-400 DSC’-CP when implemented with a runtime limit of 400s

http://www.cc.gatech.edu/dimacs10/
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4.1 Color-based CMH

Figures 5 and 6 illustrate the structure of the coefficient matrix for the
VCP-ASS formulation for VCP benchmark instances 3-Insertions_3.col and
Queen5_5.col respectively. The X-axis represents variables sorted in the or-
der 𝑥1,1, 𝑥2,1, ..., 𝑥1,2, 𝑥2,2, ..., 𝑥1,𝑛, 𝑥2,𝑛, ..., 𝑥𝑛,𝑛, 𝑦1, 𝑦2, ..., 𝑦𝑛. Y-axis represents con-
straints ordered such that any constraint that contains a variable that appears in
position 𝑖 in the order appears before any constraint that contains a variable at
position 𝑗, 𝑗 > 𝑖. Constraints 1g (symmetry breaking) and Constraints 1h and 1i
(variable bounding) are omitted in this illustration. In other words, the variables
and constraints are sorted according to colour. The graph plots non-zero coeffecients
of the formulation. The horizontal band at the top of the figures corresponds to Con-
straints 2d, which contains variables involving multiple colours. The figure reveals a
block-diagonal structure.

Fig. 5: The coefficient matrix of the VCP-ASS formulation for instance 3-
Insertions_3.col when rows and columns are sorted as in a CBC.

The colour-based CMH (CBC) for the VCP is an attempt to take advantage
of this block diagonal structure when designing a heuristic decomposition strategy.
From Table 1 it is evident that for 𝜂 = 1, CBC has a better performance compared to
that of the RVC. In general, larger block size is expected to result in higher solution
quality, but also lead to longer runtimes. However, decreasing the block size too
much may lead to too many sub problems and longer overall set up times. See Table
3 for a summary of the results obtained by CBC. From the performance of CBC, it
is clear that larger block sizes lead to longer runtimes but this does not correspond
to improved solution quality trends. This can be attributed to the fact that the
algorithm might terminate due to the runtime limit being exceeded for larger block
sizes, which contributes highly to the average %gap. This becomes more evident with
the %gap calculated exclusively for the feasible solutions.

For CBC, the block objective function tries to solve for the largest subgraph that
can be coloured by the elements of the block. The underlying problem therefore seeks



13

Fig. 6: The coefficient matrix of the VCP-ASS formulation for instance Queen5_5.col
when rows and columns are sorted as in a CBC

to isolate independent sets in the graph, which can be an NP hard problem. Thus, the
precise optimization problem solved in subproblems of a colour-based decomposition
are not necessarily any easier than solving the original problem. Since increasing the
block size beyond 𝜂 = 8 may lead to very long algorithm runtimes, increasing block
size further will probably not improve CMH performance. This motivates testing the
impact of the overlap design parameter on the CBC. Surprisingly, overlap feature has
a negative effect on CBC’s performance. Both average algorithm runtime and %gap
increase when the overlap feature is introduced. However, when only feasible solutions
are considered there is an improvement concerning the average gap, indicating that
the overlap feature need not necessarily have a negative impact on CBC’s solution
quality and this instead may be attributed to the premature termination of the
algorithm due to the runtime limit being exceeded.

Table 3: Summary of performance details of colour-based CMH strategies

Configuration Average
runtime

Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(only

feasible
solutions)

CBC(1,0) 569.17 521.17 116 45 52.41
CBC(4,0) 1,694.07 2,806.29 72 41 63.77
CBC(8,0) 1,839.26 1,247.49 86 51 57.85

CBC(4,50) 2,129.31 3,490.89 52 14 48.79
CBC(8,50) 1,842.23 2,102.66 65 20 39.46
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4.2 Vertex-based CMH

The performance of various vertex-based approaches is summarized in Table 4. In
case of RVC, performance trends are rather irregular, with RVC(20,0,0) exhibiting
the best performance when 𝜃 = 0. In contrast to that of CBC, it is evident that
overlap feature can be employed in the RVC to produce more feasible solutions.
The overall average gap still remains high whereas the average gap calculated only
over the feasible solutions decreases. This could be due to the large RVC runtimes
as a result of implementing overlap. In case of exceeding runtime limit, the CMH
terminates and returns the number of vertices (𝑛) as the result. Therefore, a subset 𝑆
of 95 instances on which all vertex-based CMH strategies produce feasible solutions
has been constructed in order to make a fair comparison between their performances.

Table 4: Summary of performance details of various vertex-based CMH strategies

Configuration Average
runtime

Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(only

feasible
solutions)

Average
%gap(over

S)

RVC(1,0) 917.08 1,103.59 104 35 34.45 35.41
RVC(10,0) 797.95 1,029.42 109 31 34.68 35.65
RVC(20,0) 767.18 1,142.73 107 38 34.02 34.35

RVC(10,50) 954.28 1,105.3 104 38 36.6 36.95
RVC(20,50) 913.79 1,103.09 104 37 33.82 34.8

SLC(1,0) 973.73 595.88 108 49 27.18 26.47
SLC(10,0) 703.43 879.43 112 60 23.04 23.29
SLC(20,0) 669.67 878.55 112 55 22.02 22.26

SLC(10,50) 899.41 1,250.6 106 58 21.41 22
SLC(20,50) 838.19 1,054.18 108 61 19.66 20.8

DSC(1,0) 1,204.19 2,148.55 95 48 26.14 26.14
DSC(10,0) 831.33 1,208.23 109 55 22.24 22.8
DSC(20,0) 762.19 1,207.75 109 60 21.67 21.98

DSC(10,50) 992.31 1,539.85 102 56 16.33 16.68
DSC(20,50) 928.37 1,489.96 105 56 17.07 17.64

Figure 7 shows a similar the coefficient matrix illustration for the instance 3-
Insertions_3.col, but with the variables and contraints arranged in a random or-
der as considered in an RVC such as 𝑥1,1, 𝑥1,2, ..., 𝑥2,1, 𝑥2,2, ..., 𝑥𝑛,1, 𝑥𝑛,2, ..., 𝑥𝑛,𝑛,
𝑦1, 𝑦2, ..., 𝑦𝑛. By sorting constraints, any constraint that contains a variable that ap-
pears in position 𝑖 in the order appears before any constraint that contains a variable
at position 𝑗, 𝑗 > 𝑖. Let vertical lines 𝑙0 and 𝑙1 represent how vertices are divided to
define three blocks 𝑏0, 𝑏1, 𝑏2 of an RVC. The horizontal band at the top of the graph
corresponds to Constraints 1d, which may be evaluated independently in each block.
The challenge is to evaluate edge Constraints 1e. In this figure, rectangular window
𝐶0 represents all the edge constraints that contain variables from block 𝑏0. It can be
easily seen that many of these constraints contain variables from other blocks as well.
This means several vertices of block 𝑏0 will be coloured without evaluating all of the
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constraints they are contained in. It is therefore desirable to construct blocks such
that a vertex is coloured after all constraints that contain it have been evaluated.

Fig. 7: The coefficient matrix of the VCP-ASS formulation when rows and columns
are sorted in the order of vertices arranged in RVC.

Sequential colouring (SC) refers to greedy strategies which colours vertices of a
graph one by one. It is proven that there exists an order which, when utilized by
the SC, results in an optimal colouring. Matula et al. (1972) presents an in depth
study of the influence of the order in which vertices are coloured in a SC heuristic.
This work introduced the SL ordering and proved that when utilized by the SC, this
order guarantees the max-subgraph-min-degree bound given by

𝜒(𝐺) ≤ 1 + max𝐻∶subgraph of G min𝑣∈𝐻{deg𝐻(𝑣)}

Note that the configuration (1, 0, 0) of vertex-based CMH corresponds to a SC heuris-
tic and guarantees this bound when one uses SL ordering. The improvement of RVC
solution quality with larger block sizes and when applying the overlap feature moti-
vates similar experiments using SL-ordering in the vertex-based CMH, resulting in
the SL-CMH or SLC.

Table 4 compares the vertex-based CMH performance with respect to design
parameters 𝜂 and 𝜃. These experiments are based on the performance exhibited on
the insances from set 𝑆. It is clear that utilizing SL ordering in the vertex-based CMH
is an improvement over the RVC. The Table 4 also shows how increasing the block
size improves solution quality. However, it must be noted that very large blocks lead
to very long runtimes and hence the number of optimal solutions decreases for 𝜂 = 20.
Thus it is not feasible to increase block size further to improve SLC’s performance.
Overlap experiments show that this feature improve the overall performance of SLC.
While it is clear that the algorithm generates high quality solutions, overlap also
increases the algorithm runtime, thereby leading to the termination of the program
before it generates a solution. This results in fewer feasible and optimal solutions and
larger average %gaps compared to the results of SLC implemented without overlap.
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From these experiments it is worth noting that, for overlap to be able to handle
constraints linking blocks more effectively, it requires vertices which share Con-
straints 1e to be present in consecutive blocks. This idea motivates utilizing the
DSATUR-based dynamic ordering in the CMH strategy, resulting in the DSC. While
using DSATUR may not lead to solution quality improvements, it may exhibit better
performance when employed with non-zero overlap.

In contrast with the CBC, the VBC offers a much more natural way of decompos-
ing vertices. Consider a graph that can be decomposed into connected components.
This leads to a natural decomposition of vertices. Each component can be indepen-
dently coloured by implementing only the subset of Constraints 1d and 1e which are
active in it and yet produce an optimal solution for the full problem. The objective
of using a minimum number of colours can be achieved by implementing the full
objective function 1c on all the components. The possibility of such an optimality-
preserving decomposition is what motivates the vertex-based CMH. Although most
of the graphs that we encounter in real-world examples cannot be decomposed in this
fashion, whenever possible the idea is to arrange the vertices of the graph and design
blocks of the CMH so that vertices that share edges are coloured in the same block.
Figures 8 and 9 illustrate coefficient matrices when vertices are ordered in accordance
with an SLC and DSC, respectively for the same instance 3-Insertions_3.col.

Fig. 8: The coefficient matrix of the VCP-ASS formulation for instance 3-
Insertions_3.col when rows and columns are sorted in the order of vertices arranged
in SLC.

From figures 8 and 9, it is clear that SLC and DSC approaches offer the possibility
of dividing vertices such that there are significantly fewer overlapping constraints
across blocks. This could be a possible explanation for why they outperform the
RVC approach. One must note here that the possibility of constructing such blocks
depends on the structure of the graph. Moreover, the chromatic number of a graph
is not a local property. For example, it is possible to construct Mycielski graphs of
arbitrarily large chromatic numbers but which have a maximal clique size less than
or equal to two. Moreover, SLC and DSC ordering will only result in significant
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Fig. 9: The coefficient matrix of the VCP-ASS formulation for instance 3-
Insertions_3.col when rows and columns are sorted in the order of vertices arranged
in DSC.

differences concerning grouping constraints when the vertices of the graph are less
interconnected. This can be observed in the Figures 10, 11 and 12. They illustrate
constraint matrices of instance Queen5_5.col when its vertices are sorted as in the
RVC, SLC and DSC orders respectively. Compared to instance 3-Insertions_3.col,
instance Queen5_5.col is characterized by a denser graph in which vertices are highly
interconnected. This means that none of the orders RVC, SLC or DSC can decompose
vertices into blocks such that edge constraints only have variables from a particular
block or even from consecutive blocks. Thus coefficient matrices show no significant
difference concerning the distribution of constraints under any of these orders.
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Fig. 10: The coefficient matrix of the VCP-ASS formulation for instance
Queen5_5.col when rows and columns are sorted in the order of vertices arranged
in RVC

Fig. 11: The coefficient matrix of the VCP-ASS formulation for instance
Queen5_5.col when rows and columns are sorted in the order of vertices arranged
in SLC
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Fig. 12: The coefficient matrix of the VCP-ASS formulation for instance
Queen5_5.col when rows and columns are sorted in the order of vertices arranged
in DSC
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Similar to all other CMH strategies discussed, the solution quality of DSC also
improves upon increasing block size, as is evident from Table 4. Note that concerning
experiments without overlap, the SLC exhibits the best overall performance. Table
4 also presents the results of DSC when implemented with overlap 𝜃 = 50. Out of
all the CMH strategies presented in the paper, DSC when implemented with overlap
leads to the lowest %gap computed over the feasible solutions, indicating its ability
to generate high quality solutions for the VCP. However, algorithm runtime also
increases while adding overlap feature and affects algorithms overall efficiency. SLC
exhibits the lowest impact on algorithm runtime when implementing overlap.

To further improve the method, an upper bound for the chromatic number is
utilized to reduce the size of the formulation. This is done by executing a simple
greedy colouring heuristic that colours vertices one after the other based on the
SL ordering. Moreover, using the number of vertices(𝑛) as the algorithm output on
reaching timelimit contribute a disproportionately high value towards the average
gap, making it an inefficient measure to study CMH performance with respect to
other best performing algorithms. The SLC and DSC algorithms after implementing
this modification is renamed as SLC’ and DSC’ respectively. The results of the SLC’
and DSC’ on the benchmark instances is summarized in Table 5. While adding
this lower bounding procedure increases the average runtime, it guarantees that the
algorithm outputs a feasible solution to all instances. This also explains the identical
values for the average gap and average gap (feasible) for results in Table 5.

4.3 Solving subproblems using constraint programming

Even though integer programming formulations have been employed as the exact
method to solve subproblems in all the previous experiments, the generality of the
CMH approach allows even other exact approaches to be used for solving subprob-
lems. Recent advances in the area of constraint programming(CP) solvers motivates
using a CP formulation as the exact method within the CMH algorithm. The similar-
ity between the integer programming and constraint programming approaches lets
us use the same CMH framework except that the subproblems are solved utilizing an
equivalent CP formulation. The algorithms obtained on utilizing the CP formulation
in DSC’ and SLC’ are denoted as DSC’-CP and SLC’-CP respectively.

Let 𝑐𝑣 denote the colour assigned to vertex 𝑣 in a given block 𝑏𝑘 and let 𝑧 denote
the total number of colours utilized. The simple CP formulation utilized to solve the
block 𝑏𝑘 can now be formulated as follows.

minimize: 𝑧 (4)
subject to: 𝑧 ≥ 𝑐𝑣 ∀𝑣 ∈ 𝑏𝑘 (5)

alldiff(𝑐𝑣, 𝑐𝑣′ )∀(𝑣, 𝑣′) ∈ 𝐸𝑏𝑘
(6)

𝑐𝑣 ∈ {0, 1, ..., 𝑛 − 1} ∀𝑣 ∈ 𝑏𝑘 (7)
𝑧 ∈ {0, 1, ..., 𝑛 − 1} (8)

JaCoP 4.7 has been utilized to solve the CP formulations. The performance
summary of DSC’-CP and SLC’-CP on the benchmark instances is presented in
Table 5 for comparison.
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Table 5: Summary of performance details of SLC’, DSC’, SLC’-CP and DSC’-CP.

Configuration Average runtime Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(feasible)

SLC’(1,0) 877.32 28.14 131 53 28.14
SLC’(10,0) 561.42 24.93 131 57 24.93
SLC’(20,0) 485.33 23.68 131 58 23.68
SLC’(10,50) 652.79 23.67 131 58 23.67
SLC’(20,50) 591.18 22.33 131 61 22.33

DSC’(1,0) 1,194.75 20.35 131 55 20.35
DSC’(10,0) 773.27 24.02 131 46 24.02
DSC’(20,0) 699.66 21.84 131 53 21.84
DSC’(10,50) 854.03 19.54 131 56 19.54
DSC’(20,50) 753.77 20.48 131 52 20.48

SLC’-CP(1,0) 66.11 28.14 131 53 28.14
SLC’-CP(10,0) 115.1 24.33 131 57 24.33
SLC’-CP(20,0) 1,477.92 24.25 131 59 24.25
SLC’-CP(10,50) 143.96 23.28 131 57 23.28
SLC’-CP(20,50) 1,511.4 23.05 131 59 23.05

DSC’-CP(1,0) 379.04 27.06 131 50 27.06
DSC’-CP(10,0) 172.83 26.14 131 55 26.14
DSC’-CP(20,0) 1,453.86 26.56 131 53 26.56
DSC’-CP(10,50) 194.72 25.35 131 52 25.35
DSC’-CP(20,50) 1,528.31 24.92 131 55 24.92

SLC’-400(1,0) 174.26 27.72 131 52 27.72
SLC’-400(10,0) 100.79 24.6 131 57 24.6
SLC’-400(20,0) 91.4 23.44 131 57 23.44
SLC’-400(10,50) 118.54 23.36 131 57 23.36
SLC’-400(20,50) 107.55 22.31 131 60 22.31

DSC’-400(1,0) 219.41 21.12 131 55 21.12
DSC’-400(10,0) 133.74 23.91 131 52 23.91
DSC’-400(20,0) 120.2 21.61 131 56 21.61
DSC’-400(10,50) 159.49 20.16 131 56 20.16
DSC’-400(20,50) 139.08 20.24 131 55 20.24

SLC’-CP-400(1,0) 7.31 27.72 131 52 27.72
SLC’-CP-400(10,0) 11.5 23.9 131 56 23.9
SLC’-CP-400(20,0) 167.77 23.83 131 58 23.83
SLC’-CP-400(10,50) 15.73 22.85 131 56 22.85
SLC’-CP-400(20,50) 171.55 22.62 131 58 22.62

DSC’-CP-400(1,0) 90.08 28.03 131 47 28.03
DSC’-CP-400(10,0) 47 26.44 131 53 26.44
DSC’-CP-400(20,0) 173.52 27.28 131 51 27.28
DSC’-CP-400(10,50) 64.64 25.45 131 51 25.45
DSC’-CP-400(20,50) 183.86 24.5 131 54 24.5

For block sizes less than 20, DSC’-CP and SLC’-CP exhibit the same perfor-
mance in shorter average runtimes than the SLC’ and DSC’ algorithms. However,
for 𝜂 = 20 and greater, the average runtime of DSC’-CP and SLC’-CP increases
rapidly. This implies that while utilizing a CP formulation makes the CMH ap-
proach for vertex colouring more efficient for small block sizes, the same does not
hold for large block sizes. The observation, however, that a large share of the CP
solver runtime is dedicated towards proving the optimality of the solution rather
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than at arriving the solution, experiments to test the DSC’-CP and SLC’-CP when
given a runtime limit of 400 seconds to solve the subproblems were conducted. These
algorithms are denoted as SLC’-CP-400 and DSC’-CP-400. Note that in these two
algorithms, the subproblems are not solved using an exact method but are instead
solved heuristically, deviating from the original definition of the CMH. The per-
formance of algorithms SLC’-400 and DSC’-400 obtained by restricting runtimes of
SLC’ and DSC’ respectively are also summarized in Table 5.

As expected and evident in Table 5, the algorithms benefit from using an upper
bound. The algorithm runtimes are shorter and as a result, leads to higher number
of optimal solutions and smaller %gaps. With this improvement, DSATUR-based
CMHs exhibit superior performance over the SL-based heuristics with respect to
%gaps. However, the algorithm runtimes are still longer than for DSATUR-based
approaches due to the dynamic sorting step that must be conducted in each iteration.
In general, it can be observed that algorithms utilizing CP are efficient for smaller
block sizes, 𝜂 = 1 and 𝜂 = 10, but are inefficient for 𝜂 = 20. For 𝜂 = 20, the
algorithm may have to be prematurely stopped due to longer runtimes, thereby
generating fewer optimal solutions and larger %gap. The fact that part of the runtime
is spent on proving the optimality was the motivation to implement a smaller runtime
limit such as 400s. Experiments show that giving a runtime limit on subproblems
significantly reduces algorithm runtimes, while still generating solutions of almost
the same quality. This offers the possibility of experimenting with larger block sizes.
Clearly DSC’ exbits the best performance. Note here that DSC’-400 is capable of
producing almost equally good solutions with much shorter runtime. Therefore, in
terms of efficiency DSC’-400 outperforms all other CMHs designed for the VCP in
this paper.

Tables 6 and 7 present the performance of SLC’, DSC’, SLC’-CP, DSC’-CP, SLC’-
400, DSC’-400, SLC’-CP-400 and DSC’-CP-400 on the difficult VCP instances. The
configuration used during these experiments is 𝜂 = 20 and 𝜃 = 50. The performance
of some of the best performing algorithms available in the literature such as Morgen-
stern (1996), Hertz, Plumettaz, and Zufferey (2008), Funabiki and Higashino (2000)
and Malaguti et al. (2008) is also presented for comparison purposes. All of them are
metaheuristics and constitute the best performing algorithms for the VCP. Morgen-
stern (1996) introduced an interesting neighbourhood structure called the Impasse
Class used within a simulated annealing scheme to design one of the first efficient
metaheuristics for the VCP. Hertz et al. (2008) introduced the variable search space
heuristic based on the principles of variable neighbourhood search. Funabiki and
Higashino (2000) proposed a Tabu Search heuristic which incorporates the Impasse
Class neighbourhoods introduced by Morgenstern (1996). Finally, Malaguti et al.
(2008) presents one of the best existing heuristics for the VCP. A genetic algorithm
approach is utilized which also incorporates Tabu Search principles and ideas from
the Impasse Class neighbourhood structures introduced by Morgenstern (1996). The
algorithm makes use of solutions of a variety of greedy heuristics such as DSATUR
and RLF to generate the initial pool of solutions to be used in the genetic algorithm
framework. While the CMHs introduced have been able to generate high quality
solutions for several of these difficult instances, they are inefficient on others due to
CMH exceeding the runtime limit of 3600s. A comparison between the performances
of SLC’, SLC’-CP, DSC’, DSC’-CP with those of SLC’-400, SLC’-CP-400, DSC’-400,
DSC’-CP-400 shows that for very large and difficult instances, it is beneficial to use
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a runtime limit when solving subproblems so as to prevent early termination of the
CMH.
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5 Results and Discussion

This paper presents the first extensive experimentation conducted in order to design
a constructive matheuristic (CMH) strategy for the vertex colouring problem (VCP),
thereby suggesting the possibility of utilizing matheuristic techniques to tackle the
VCP. The primary insight gained from this work is that it is possible to extend
subproblems of successive augmentation techniques and employ simple integer pro-
gramming approaches to arrive at feasible solutions for the VCP. This, in turn,
becomes a way of designing a CMH. Experiments show that algorithm design pa-
rameters such as overlap can be effectively utilized to improve the solution quality
when used in combination with an appropriate decomposition strategy. The major
challenge, however, is the very high impact of such features on algorithmic runtime.

The paper compares and contrast the efficiency of using the colour-based and
vertex-based decomposition strategies in the CMH. The results of the extensive ex-
perimentation suggests that the vertex based approach is much more suited for appli-
cation in CMH and offers possibilities for further improvements. These experiments
also suggest the general trends one can expect when employing such decomposition
strategies in other vertex colouring and vertex colouring-like problems, especially the
problems that are time-based.

Specifically, there is a need to identify smarter decomposition strategies such
that the subproblems involved can be solved more efficiently. The present approach
designs blocks by making partitions of equal size on the vertices or colours, which
need not partition the problem into equally difficult subproblems. Therefore, further
research on how to design the CMH approach so as to adapt itself based on the
structure of the instance concerned may be interesting. Another interesting area
of research can be introducing more algorithmic parameters to better navigate the
CMH to produce high quality solutions.
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