
1 

 

Air Pollution and Child Health in Urban India 
 

 Arkadipta Ghosh    and   Arnab Mukherji 

 Mathematica Policy Research    Center for Public Policy,  

 Princeton, NJ      IIM Bangalore 

 arkadipta@gmail.com     arnab.mukherji@gmail.com  

 

Abstract 

 

A potential source of confounding in studies investigating the effect of indoor air 

pollution on child health is exposure to ambient air pollution. We investigate this 

relationship pairing city-level air pollution measures with child level data from the 

National Family Health Survey (2005-06) for six cities in India. We address simultaneity 

in child health outcomes and potential endogeneity of city-level air pollution by using a 

bivariate probit regression framework with city fixed effects. Our findings show –1) an 

increase in ambient air pollution significantly increases child morbidity; 2) the type of 

cooking fuel used at home (usual measure of indoor pollution) is not a significant 

determinant of child morbidity once ambient air pollution and other child, household, and 

city-level covariates are controlled for; and 3) it is important to explicitly account for the 

correlation in various child health outcomes by modeling them jointly. Our findings 

suggest that targeted city-wide reductions in ambient air pollution could play an 

important role in improving child health. 
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1. Introduction: 

 Exposure to air pollution has been linked to poor child health outcomes in a range 

of studies that have looked at a variety of health measures.
1
 For example, Frankenberg et 

al. (2004) investigate the effect of outdoor air pollution due to the forest fires in Indonesia 

in 1997 on infants and reports that there was a 1% decline in the Indonesian cohort size 

due to these fires; (Smith 2000) on the other hand looks at the impact of solid fuels used 

for cooking at home and suggests that as much as 4-5% of the national disease burden for 

India may be explained by indoor air pollution alone. A limitation in the current literature 

is the lack of objective measures of both indoor and outdoor air pollution in the same 

analysis. Additionally, several studies use air pollution proxies such as the occurrence of 

forest fires (Jayachandran 2009) or the type of cooking fuels used at home (Smith 2000), 

in the absence of more direct pollution measures. An alternative to using such proxies is 

to use air pollution data gathered from direct observation with expensive monitoring 

instruments. 

 In this paper, we combine directly measured ambient air pollution data for 2005-

06, collected by the National Air Monitoring Program of the Ministry of Environment 

and Forests in India with household and child-level data from the third wave of the 

National Family Health Survey or NFHS-3 (2005-6). This allows us to construct an 

analysis sample that not only has variation in the type of solid fuel used at home (our 

proxy for indoor air pollution, as in some of the previous studies), but also variation in 

the average level of air pollution that households are exposed to during the month of their 

interview. Hence, we are able to investigate the relative effects of both types of exposure 

to air pollution on child morbidity, as captured by the incidence of two common illnesses 

in children – cough and fever – in the week prior to the interview.  

 Apart from using both ambient and indoor pollution measures, we also explicitly 

tackle concerns on model specification and causality in this paper. With repeated 

observations from the same city, we are able to control for unobserved city fixed effects 

that may uniformly affect all children in the same city, for example, latitude, inherently 

                                                           
1
 See Bruce et. al. (2000), Chay and Greenstone (2003), Frankenberg et. al. (2004), Currie el. al. (2005) & 

Janke et. al. (2009). 
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high versus low levels of vehicular emission, location near an industrial hub, proximity to 

a river, etc. We also address potential misspecification concerns by jointly modeling the 

probability of a child having a fever and that of having a cough, since they both pertain to 

the same underlying health status of the child and are likely to be determined by similar 

factors – both internal and external to the child. This is an important departure from the 

literature where these are usually studied as independent events.   

 We find that a rise in ambient air pollution significantly increases the likelihood 

of a child suffering from cough and fever in the past week. However, the type of cooking 

fuel used at home is not significantly related to child morbidity after accounting for 

ambient air pollution and other child- and household-level control variables. Thus, while 

bad air is bad for child health, we find that ambient air pollution is a more significant 

determinant of the child health outcomes we study. This suggests that controlling city-

wide air pollution could significantly lower child morbidity, and should receive greater 

emphasis in urban planning and infrastructure development. We also find a significant 

correlation between the two child morbidity outcomes – fever and cough, which suggests 

that models that do not explicitly account for this correlation are likely to be mis-

specified.  

 The rest of the paper is arranged as follows: Section 2 presents the background 

and the data we use, Section 3 presents our empirical strategy, Section 4 presents our 

results, and Section 5 closes with a discussion of our findings. 

2. Background and Data 

 That poor air quality leads to poor health outcomes for both adults and children is 

fairly well established in the literature. The mechanisms by which air quality affects 

health is usually thought to be through reduced pulmonary functioning leading to acute 

respiratory symptoms (Bruce et. al. 2000). To the best of our knowledge, the focus in this 

literature has been on either ambient air pollution or on indoor air pollution, but not both. 

One of our contributions in this paper lies in examining the relative effects of both sorts 

of exposure on child health.  

 We use data from the city sample of NFHS wave 3 that was collected over 2005 

and 2006.  For our analysis, we specifically use the child-recode datafile (IAKR51FL.DTA), 
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and the health outcomes analyzed are incidence of fever and cough among children (born 

within the last three years)  during the two weeks prior to the interview, as reported by 

the household respondent. Data on ambient air pollution is taken from the administrative 

records maintained by the Central Pollution Control Board (CPCB), Government of 

India, under its National Air Monitoring Program (NAMP). NAMP provides data on four 

key pollutants for the cities on which we have child-level data over the survey duration 

2005-6
2
:  Sulphur Dioxide (S02), Nitrogen Dioxide (NO2), Respirable Suspended 

Particulate Matter (RSPM / PM2.5), and Suspended Particulate Matter (SPM/PM10). We 

use the average monthly levels of RSPM and SPM as our primary measures of ambient 

air pollution in separate specifications, since 1) particle pollution that consists of 

microscopic solids or liquid droplets can affect the lungs and cause health problems 

including bronchial irritation, coughing, decreased lung function, aggravated asthma, and 

chronic bronchitis, 2) fine particles or RSPM are 2.5 micrometers in diameter or smaller 

and are more likely to be found in smoke and haze – ubiquitous features of most major 

Indian cities – thus constituting a major threat to respiratory health and functioning; 3) 

coarse particles or SPM that are larger than 2.5 micrometers but smaller than 10 

micrometers in diameter, and more common on roadways and in dust, also pose 

significant health problems; 3) the high correlation (> 0.95) between RSPM, SPM, NO2 

precludes their joint inclusion in the same specification; and 4) the average monthly 

levels of SO2 and NO2 were usually within their permissible levels for most cities in our 

sample. Figures 1 - 4 plot the city-level monthly average, maximum, minimum, and 

NAMP-stipulated permissible level of each of the four pollutants on which data are 

available from the NAMP across the NFHS interview months.
3
  We combine air pollution 

data with the NFHS dataset by calculating standardized monthly averages or deviations 

from permissible levels for each source of ambient air pollution and pairing it to each 

case’s month of interview as reported in the NFHS. Data on indoor air pollution comes 

from the NFHS where we capture each household’s indoor air quality using the type of 

cooking fuel used by the household. Cooking fuel is believed to be the most important 

                                                           
2
 CPCB is a statutory body under the Ministry of Environment and Forests (MoEF). CPCB's primary 

responsibilities include the prevention, control and abatement of air and water pollution in India. 
3
 We check for the effect of S02 and NO2 emissions on child health by estimating additional regressions 

that we discuss later; our main focus remains the effects of RSPM and SPM on child morbidity. 
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source of indoor air pollution. From the NFHS data, we know if households use 

electricity, LPG, natural gas, kerosene, coal, lignite, charcoal, wood, straw/ shrubs/grass, 

crop residue, or animal dung as the primary cooking fuel. We classify these into three 

categories, clean cooking fuel (i.e. electricity, LPG, natural gas), unclean fuel (i.e. 

kerosene, coal, lignite and charcoal), and unprocessed fuel (wood, straw, crop residue, 

and animal dung). 

3. Estimation Strategy 

 Let child i, living in city c, in month m have a latent propensity to have fever and 

cough be captured by ����
� � � 	
��


� , 	���

� � where the h* represents unobserved latent 

propensities that are only partially observed. These latent propensities are related to a 

number of child-specific, household-specific, month-specific and city-specific effects; in 

these models we are specifically interested in the month- and city-specific ambient air 

pollution variables.  Thus we have: 
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However, neither 	
��

�  and 	���


�  are observed; we only know if they are positive, and 

thus, we observe �	
��
 , 	���
�. If we assume that �
��
 and ����
 are independently 

distributed N(0,1) then we can estimate two sets of independent probit regressions to 

estimate the underlying regression coefficients β and γ. However, this essentially assumes 

that these two health conditions are not correlated   – i.e. the child’s likelihood of having 

a fever is unrelated to having a cough. If the two are in fact correlated, as they are likely 

to be through unobserved child, household, or environmental attributes, then a bivariate 

probit model that assumes that the errors in these two regressions are jointly distributed is 

more appropriate, i.e.  

�
��
 , ����
~&�0,0,1,1, '� (1) 

where θ is the correlation coefficient between the two error terms.  This framework, 

therefore, allows us to explicitly account for the likely correlation between the two child 

morbidity measures that are affected by the level of air pollution. In equations (1) and (2), 
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inAPimc are a set of dummy variables for the use of coarse bio-fuels for cooking at home 

as a proxy for indoor air pollution, while outAPmc denotes a specific outdoor air pollution 

measure such as deviation of the monthly average of RSPM or SPM from its permissible 

level.
4
 Apart from these measures, we also account for a number of child-specific 

variables such as sex, age, and health endowments (height and weight); as well as 

parental or household variables such as religion, education of the parent, social group, 

and wealth of the household. The �
 are city-level fixed effects that account for city-

specific unobserved attributes that could influence a child’s health as well as ambient air 

pollution but do not vary either across households within the same city or over time (for 

example, high versus low volume of traffic, latitude or geographical proximity to say 

hills, forests, rivers, or to significant sources of pollution, such as a manufacturing hub). 

4. Results 

 Child health is known to be quite fragile and particularly so in developing 

countries. Even in our data, respondents report a high frequency of child morbidity in 

terms of the incidence of fever and cough that occurred in the two weeks prior to the 

NFHS interview (see Figure 2). The out-door air pollution measures tend to be highly 

correlated indicating months in which SO2 is high is also like to be a month with high 

NO2, RSPM and SPM (see Table 2). As mentioned earlier, there is a large amount of 

variation across months, and across cities in the level of outdoor air pollution that is 

reported, and in the case of many months, measured pollutants tend to be well below the 

levels mandated in Table 1. SPM and RSPM tend to be the pollutants that most 

frequently violate these safe limits and our main focus is therefore on particle pollution in 

this analysis.  In addition, our sample consist of children whose average age is about 29 

months and for these children we observe their gender, native health status as measured 

by height for age and weight for height, their household asset status, social group 

membership, religion, mother’s education etc (see Table 3). 

We start by estimating a bivariate probit specification for cough and fever that 

only includes the indoor air pollution variables and a time trend. Next, we progressively 

                                                           
4
 We use a number of alternative functional forms of these biweekly readings for our analysis – the mean, 

standardized mean, the standard deviation calculated over the month, the coefficient of variation, and 

finally, deviations in the monthly average levels from the permissible or safe levels as defined by NAPM. 
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add more covariates to this model – starting with our outdoor air pollution measures, city 

fixed effects, and finally adding child- and household-level covariates as well. Our 

estimates suggest that there is a substantial correlation between the two health outcomes 

that is important to account for in the model. Second, in the basic model with only indoor 

air pollution measures and monthly time trend, we find that cooking at home with dirty 

fuels (like coal or lignite) or with unprocessed fuels (like grass, dung, straw, etc.) that 

generate smoke in comparison to LPG, or electricity based cooking devices tend to lead 

to a greater likelihood for a child having a cough in the past week. There appears to be no 

similar effect on fever, although the correlation coefficient across the joint models for 

having a fever and a cough are statistically significant and positive suggesting that 

unobserved factors that cause a fever are strongly related to unobserved factors that cause 

a cough as well. The correlation coefficient is about 0.83 across all the models in Table 4 

suggesting that this correlation is sizeable. In Model (2) we find that the indoor air-

pollution coefficients are reduced in magnitude and statistical significance on introducing 

one of our measures of outdoor air pollution - the log of RSPM to Model (1). While 

indoor air-pollution remains significant, the log of RSPM also has a positive and 

statistically significant effect on the incidence of cough, suggesting that both forms of air-

pollution may be important.  

In Model (3) we introduce city level fixed effects to capture variation in 

unobservables that affect child health across cities but are constant within the city – for 

example, elevation, humidity, population density etc. On introducing city fixed effects we 

find that indoor air pollution measures have marginally smaller coefficients, and the 

coefficient on unprocessed fuels is no longer significant while that on dirty fuels remains 

significant but is smaller. However, on introducing city fixed effects the coefficient on 

log of RSPM is about 5 times larger and is significant across both the cough and fever 

equations suggesting that earlier estimates may be biased by city level unobservables. 

Note also that outdoor air pollution matters for both fever and cough. Model (4) is our 

final model in Table 4 where apart from city level fixed effects we also include a number 

of child, mother, and household level variables that tend to all vary within the city and so 

captures additional degrees of variation. Once we include individual and household level 

covariates in addition to city level fixed effects we find that indoor air pollution proxies – 
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the type of cooking fuel used at home is not statistically significant. The log of RSPM, 

our measure of outdoor or ambient air pollution, remains positive and statistically 

significant and is somewhat larger than in Model (3) for both fever and cough.  

In Table 5 we explore other measures of outdoor air pollution such as SO2, NO2 

and SPM. In this table we estimate the equivalent specification of Model (4) with all its 

covariates, fixed effects, and indoor air pollution measures, but with different outdoor 

pollution measures. Log of SO2 has coefficients that are larger than what we see for 

RSPM, while the NO2 coefficients are not statistically significant. Finally, SPM has 

coefficients that are also larger than what we see for RSPM. Thus, we see that there is a 

fair amount of heterogeneity across different air pollution measures in how they affect 

child health. Apart from the innate differences across different measures that may explain 

these differences, Figures 1 – 4& 2 also show that there is wide variation in the 

prevalence of these measures. A natural question that emerges is what happens to child 

health when the level of outdoor pollution exceeds prescribed norms in Table 1. 

In Table 6 we look at the effect of deviating from National Ambient Air Quality 

Standards (NAAQS) recommended safe levels of outdoor air pollution. Negative 

deviations indicate air pollution levels are safe while positive deviations indicate that the 

air pollution levels are harmful or above the permissible level. For ease of interpretation 

we scale the deviation by diving by hundred and retain the same set of covariates as in 

Models (4)-(7). Model (8) looks at the effect of deviations in RSPM on a child’s fever or 

cough and finds that the probability of having a fever or a cough is significantly and 

positively correlated with deviation from the safe levels. Model (9) looks at the effect of 

deviations in SPM levels and finds a similar relationship between deviations in SPM 

from its safe level and the likelihood of having a cough or a fever, although size of the 

coefficients are smaller. Thus, while RSPM and SPM are closely correlated in their 

variation over time and space it would appear that they influence child health somewhat 

differently.  

So far, in these regression models we have reported estimates for our regression 

coefficients and not the marginal effects that are computationally more complicated in a 

limited dependent variable framework. Therefore, for ease of interpretation, we plot the 
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predicted probabilities of the joint outcomes against different levels of outdoor air 

pollution. Figure 3 plots the joint probability of having both a cough and fever, of having 

a cough alone, and of having a fever alone, against different levels of the prevalence of 

RSPM measured on a log scale. We first note that the standard errors are tightly 

estimated that allows us to conclude that the probabilities of each of these separate events 

are statistically different from each other. Secondly, the joint probability of having both a 

fever and a cough is always greater than the probability of having either a fever alone or a 

cough alone, suggesting that a joint model is the relevant framework for this analysis. 

Also, almost always, the probability of having a cough alone is more than having a fever 

alone, except for low levels of RSPM. In fact, the probability of a fever alone declines 

almost asymptotically with increasing RSPM suggesting that with increasing RSPM, and 

aggravated respiratory problems, other complications (possibly due to infections) may 

also set in so that having both a fever and a cough are the most likely state for a child at 

high pollution levels. Figure 4 and Figure 5 look at the predicted probabilities in 

relationship to safe levels of pollution for RSPM and SPM respectively. We find the 

distribution of predicted probabilities to be similar to what we see in Figure 3.  

In Table 7 we carry out a simple simulation exercise to get a sense of the marginal 

effects at the mean. For each pollution measure, we estimate the sample-wide average 

joint probability of fever and cough when a specific outdoor air pollution variable is held 

at the sample mean and then again when it is held at the sample maximum. We do these 

calculations for log of RSPM, scaled deviation of RSPM from safe levels and scaled 

deviation of SPM from safe levels. The log of RSPM calculations show that the joint 

probability of having both a cough and a fever goes up as much as three times in going 

from the mean to the maximum, and similarly the probability of having cough alone goes 

up from 0.07 to 0.16 on the probability scale also suggesting large effects.  Having only 

fever is a rare event and the point estimate actually declines when going from the mean to 

the maximum, which we interpret as being indicative of the fact that at high pollution 

levels a child is increasingly likely to have a cough and possibly also a fever but not just 

fever. The effects of moving from mean deviation to maximum deviation in RSPM are 

similar, but the levels are different in comparison to the calculations involving the log of 

RSPM reflecting the difference in scale between the two measures. The last set of 
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estimates are for deviation in SPM and we again see the same pattern of there being little 

change in the probability of having fever alone, but that of having both fever and cough, 

or cough alone increases significantly.   

5. Conclusions 

 Simple omitted variable bias has been known to confound many estimates and 

here we present evidence to suggest that this may also be the case for the literature 

investigating the effect of indoor air pollution on child health without explicitly 

controlling for outdoor air pollution. If higher levels of ambient air pollution lead to 

worse health outcomes and are also correlated with the levels of indoor air pollution, then 

the estimated effect of indoor air quality on child health is likely to be an overestimate. 

Our findings suggest that greater emphasis needs to be placed on improving ambient air 

quality in general as part of urban planning and development, and policies targeted at 

city-wide reductions in air pollution can significantly improve child health.  

As noted by Kjellström et al. (2006), several interventions have been shown to be 

cost effective in controlling air pollution in the context of the United States in that the 

cost of implementing each of these interventions was less than the value of lives saved. 

These include interventions such as controlling coal-fired power plant emissions through 

high chimneys and other means, reducing lead in gasoline from 1.1 to 0.1 grams per 

gallon, and controlling SO2 emission by desulfuring residual fuel oil. Also, they rightly 

note that this list of cost-effective interventions for controlling air pollution could 

increasingly become relevant for developing countries as their industrial and 

transportation pollution situations become similar to that in the United States a few 

decades back. Larssen et al. (1997) evaluate the cost effectiveness of several measures to 

control air pollution in Mumbai and the Greater Mumbai area, and recommend that the 

following measures should be prioritized—inspection and maintenance of vehicles, 

introduction of unleaded gasoline, and introduction of low-smoke lubricating oil. They 

also note that controlling the resuspension of road dust would be one of the most cost 

effective ways of reducing exposure to suspended particles.  

While most Indian cities have taken certain steps to control ambient air pollution, 

e..g., the introduction of compressed natural gas (CNG) for auto-rickshaws in Delhi, 
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phasing out of older vehicles that do not comply with emission norms across cities, and 

placing greater emphasis on mass transit, pollution levels especially the level of 

suspended particles—a significant threat to health—continue to be dangerously high in 

many cities. The findings in this paper clearly show that ambient air pollution 

significantly increases the risk of respiratory ailments in children, and therefore pose a 

risk to their future health and well-being as well, since certain respiratory illnesses in 

childhood could turn into chronic conditions that last a lifetime and significantly hamper 

an individual’s quality of life. These findings, therefore, should reinforce the sense of 

urgency with which central, state, and local agencies need to move with respect to taking 

steps to enforce existing regulations and designing creative strategies to control pollution 

in the fast growing and large urban centers of India. 
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Figures 
 

Figure 1 Monthly RSPM Distribution over NFHS 3 Interview Months Across Cities 

 

Source: Environmental Data Bank, MOEF, Govt. of India. Safe_RSPM is the 

level of RSPM that is advised as being safe. Each pollutant is measured in µm
3
. 

 

Figure 1 Monthly SPM Distribution over NFHS 3 Interview Months Across Cities 

 
Source: Environmental Data Bank, MOEF, Govt. of India. Safe_SPM is the 

level of SPM that is advised as being safe. Each pollutant is measured in µm
3
. 
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Figure 3 Monthly SO2 Distribution over NFHS 3 Interview Months across cities 

 
Source: Environmental Data Bank, MOEF, Govt. of India. Safe_SO2 is the level of SO2 that 

the MOEF advises as being safe. Each pollutant is measured in µm
3
. 

Figure 4 Monthly NO2 Distribution over NFHS 3 Interview Months across cities 

 

Source: Environmental Data Bank, MOEF, Govt. of India. Safe_NO2 is the level of NO2 

that the MOEF advises as being safe. Each pollutant is measured in µm
3
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Figure 2 City Level Prevalence of Child Health Outcomes 

 

 Source: NFHS 3 data 

 

Figure 3 Probability (Fever, Cough) Vs Log (RSPM) 
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Figure 4 Probability (Fever, Cough) Vs RSPM Deviation from Safe Levels 

  

 

Figure 5 Probability (Fever, Cough) Vs Deviation in SPM from Safe Levels 
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Tables 

 

 

Table 1: National Ambient Air Quality Standards (NAAQS) 

S. No Pollutant Units 

Time Weighted 

Avg. 

Industrial, Residential 

and other Area 

Ecologically 

Sensitive Area Method of Measurement 

1 Sulpher Dioxide (SO2) µg/m
3
 Annual 50 20 (1) improved west and Gaeke method;  

(2) Ultraviolet Flurosence 24 hours 80 80 

2 Nitrogen Dioxide (NO2) µg/m
3
 Annual 40 30 (1) Modified Jacob & Hoechheiser (Na Arsenite) 

24 hours 80 80 (2) Chemiluminescence 

2 Particulate Matter (PM10) µg/m
3
 Annual 60 60 (1) Gravimetric;  

(2) TOEM;  and (3) Beta attenuation (size <  10 µm) 24 hours 100 100 

3 Particulate Matter (PM2.5) µg/m
3
 Annual 40 40 (1) Gravimetric;  

(2) TOEM;  and (3) Beta attenuation   (size <  2.5 µm)   24 hours 60 60 
Source: The Gazette of India, Nov 18th 2009. Available online at: http://www.cpcb.nic.in/National_Ambient_Air_Quality_Standards.php.  

 
 

Table 2 Variance-Covariance Matrix for Alternative Measures of Outdoor Pollution 

  SO21 NO21 RSPM1 SPM1 

SO2 1 

NO2 0.7329 1 

RSPM 0.7167 0.9521 1 

SPM 0.7761 0.9276 0.9727 1 
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Table 3 Summary Statistics 

Variable N Mean SD Min Max 

Uses Dirty Fuel (yes/no) 4657 0.220 0.414 0 1 

Uses Unprocessed Fuel (yes/no) 4657 0.139 0.345 0 1 

SO2(µm) 4877 7.117 3.420 1.82 15.22 

NO2 (µm) 4877 34.849 23.558 4.61 102.05 

RSPM (µm) 4877 114.454 97.190 4.96 429.96 

SPM (µm) 4877 258.654 195.080 2.52 814.75 

Child’s age_(months) 4684 29.869 16.975 0 59 

Child is Male? (yes/no)  4877 0.530 0.499 0 1 

WHO Height for Age Z scores (HAZ)  4632 18.621 40.372 -6 99.99* 

HAZ Flag 4877 0.238 0.426 0 1 

WHO Weight for height Z scores (WHZ)  4632 19.028 40.164 -4.98 99.99* 

WHZ Flag 4877 0.238 0.426 0 1 

Asset Classes 

Poorest 4877 0.051 0.220 0 1 

Middle 4877 0.156 0.363 0 1 

Richer 4877 0.323 0.468 0 1 

Richest 4877 0.470 0.532 0 1 

Lives in a Slums 4864 0.407 0.491 0 1 

Uses unsafe drinking water (yes/no) 4657 0.068 0.251 0 1 

Uses unsafe toilet facilities (yes/no) 4651 0.070 0.255 0 1 

Home has any windows? (yes/no) 4877 0.767 0.423 0 1 

educlevel2 4877 0.116 0.320 0 1 

educlevel3 4877 0.486 0.500 0 1 

educlevel4 4877 0.178 0.383 0 1 

SCST 4877 0.228 0.419 0 1 

OBC 4877 0.295 0.456 0 1 

Muslim 4877 0.219 0.414 0 1 

Christian 4877 0.027 0.163 0 1 

Other 4877 0.032 0.175 0 1 
Note: Some of the HAZ and WHZ scores were implausibly high and for each such observation we have used a dummy variable to indicate that the 

value is too large for these variables. This helps keep about 24% of the sample for the analysis as opposed to dropping observations where the HAZ or 

WHZ were too large. Both these variables are quite tricky to measure and we believe that errors in this variable is unlikely to be informative about 

other variables and keep these observations and their flags that we also include in each of our specifications. 
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Table 4 RSPM and Indoor Air Pollution 
  Model (1) Model (2) Model (3) Model (4) 

VARIABLES Fever Cough Fever Cough Fever Cough Fever Cough 

Indoor Proxies 

Dirty fuel (e.g. coal) 0.0271 0.147*** 0.0152 0.107* 0.0118 0.0983* 0.0108 0.0990 

[0.0599] [0.0557] [0.0607] [0.0563] [0.0634] [0.0597] [0.0785] [0.0738] 

Unprocessed fuel (e.g. grass) 0.0567 0.148** 0.0501 0.119* -0.0546 -0.00781 0.0278 0.0489 

[0.0710] [0.0665] [0.0710] [0.0667] [0.0719] [0.0694] [0.105] [0.100] 

Outdoor Measures 

Log(RSPM) 0.0322 0.104*** 0.426*** 0.581*** 0.448*** 0.609*** 

[0.0207] [0.0203] [0.110] [0.102] [0.113] [0.106] 

Child Level 

Child Age (months) -0.00581*** -0.00395*** 

[0.00149] [0.00141] 

Child is Male? (0,1) -0.0416 0.0157 

[0.0496] [0.0476] 

haz_who -0.0304* -0.00551 

[0.0177] [0.0172] 

whz_who -0.0339 -0.0325 

[0.0212] [0.0198] 

Household Level 

Poorest 0.112 0.254 

[0.190] [0.164] 

Middle 0.131 0.0837 

[0.117] [0.111] 

Richer 0.0936 0.120* 

[0.0719] [0.0695] 

Lives in a Slum? 0.0335 0.0455 

[0.0573] [0.0549] 

Mother's Education 

educlevel2 0.184* 0.215** 

[0.0961] [0.0907] 

educlevel3 0.221*** 0.281*** 

[0.0806] [0.0744] 

educlevel4 0.120 0.225** 

[0.111] [0.104] 

Social Group 

SC or ST -0.114 0.0334 

[0.0782] [0.0703] 

OBC 0.0988 0.0448 

[0.0688] [0.0667] 

Religion 

Muslim 0.0583 -0.0661 

[0.0696] [0.0688] 

Christian 0.142 0.0880 

[0.147] [0.139] 

Other 0.213 0.0772 

[0.135] [0.133] 

Month Counter 0.0301*** 0.0154* 0.0351*** 0.0280*** 0.0206* 0.0119 0.0143 0.00228 

[0.00893] [0.00884] [0.00940] [0.00894] [0.0120] [0.0113] [0.0124] [0.0118] 

Observations 4463 4463 4463 4463 4463 4463 4415 4415 

City Fixed Effects No No No No Yes Yes Yes Yes 

()= Cor(ε1,ε2) 0.835 0.837 0.828 0.831 
Note: Robust standard errors are in brackets below coefficient estimates; *** p<0.01, ** p<0.05, * p<0.1; omitted categories are “clean fuel”, “richest”, “no 

education”, “general”, and “Hindu”, for indoor pollution, wealth quintile, mother’s education, social groups, and religion respectively. The month counter is 

simply a count variable of which month the survey respondent was interviewed going from 1 to 11. Each regression has a constant, and dummies for levels of 

sanitation in the house (toilet, window, etc.). Finally, Wald Tests for  () � 0 are rejected at p values < 0.001.  
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Table 5 Effect of Other Ambient Air Pollution Measures 
  Model (5) Model (6) Model (7) 

VARIABLES Fever Cough Fever Cough Fever cough 

Indoor Proxies              

Dirty fuel (e.g. coal) 0.0217 0.109 0.0155 0.103 0.0115 0.100 

[0.0785] [0.0739] [0.0784] [0.0739] [0.0784] [0.0738] 

Unprocessed fuel (e.g. grass) 0.0349 0.0564 0.0316 0.0530 0.0305 0.0523 

[0.105] [0.100] [0.105] [0.0999] [0.105] [0.100] 

Outdoor Measures 

Log(SO2) 0.630*** 0.631*** 

[0.208] [0.187] 

Log(NO2) 0.0619 0.0958 

[0.124] [0.112] 

Log(SPM) 0.516*** 0.915*** 

[0.177] [0.167] 

Child Level 

Child Age (months) -0.00576*** -0.00388*** -0.00577*** -0.00387*** -0.00577*** -0.00388*** 

[0.00149] [0.00141] [0.00148] [0.00141] [0.00149] [0.00141] 

Child is Male? (0,1) -0.0438 0.0126 -0.0431 0.0133 -0.0414 0.0168 

[0.0495] [0.0473] [0.0494] [0.0473] [0.0495] [0.0475] 

haz_who -0.0312* -0.00734 -0.0321* -0.00828 -0.0310* -0.00600 

[0.0177] [0.0171] [0.0177] [0.0170] [0.0178] [0.0172] 

whz_who -0.0325 -0.0294 -0.0314 -0.0286 -0.0329 -0.0326* 

[0.0213] [0.0196] [0.0212] [0.0195] [0.0212] [0.0197] 

Household Level 

Poorest Asset Quartile 0.128 0.270* 0.123 0.268* 0.114 0.258 

[0.189] [0.163] [0.189] [0.162] [0.190] [0.164] 

Middle Asset Quartile 0.139 0.0917 0.135 0.0899 0.134 0.0925 

[0.117] [0.110] [0.116] [0.110] [0.117] [0.111] 

Richer Asset Quartile 0.0986 0.127* 0.0979 0.126* 0.0945 0.120* 

[0.0719] [0.0695] [0.0719] [0.0693] [0.0718] [0.0695] 

Household lives in a Slum? 0.0126 0.0178 0.0139 0.0208 0.0283 0.0414 

[0.0567] [0.0542] [0.0573] [0.0548] [0.0573] [0.0549] 

Mother’s Education 

educlevel2 0.177* 0.205** 0.176* 0.205** 0.176* 0.202** 

[0.0957] [0.0901] [0.0954] [0.0900] [0.0958] [0.0909] 

educlevel3 0.218*** 0.273*** 0.214*** 0.271*** 0.215*** 0.273*** 

[0.0800] [0.0737] [0.0799] [0.0738] [0.0803] [0.0749] 

educlevel4 0.110 0.208** 0.106 0.206** 0.119 0.230** 

[0.110] [0.103] [0.110] [0.103] [0.111] [0.104] 

Social Group 

SC or ST -0.103 0.0441 -0.108 0.0415 -0.112 0.0378 

[0.0781] [0.0700] [0.0781] [0.0700] [0.0782] [0.0703] 

OBC 0.0984 0.0438 0.100 0.0461 0.0941 0.0376 

[0.0689] [0.0670] [0.0687] [0.0669] [0.0690] [0.0669] 

Religion 

Muslim 0.0773 -0.0399 0.0770 -0.0387 0.0610 -0.0652 

[0.0689] [0.0680] [0.0688] [0.0680] [0.0693] [0.0687] 

Christian 0.153 0.102 0.154 0.109 0.156 0.113 

[0.148] [0.139] [0.147] [0.138] [0.147] [0.140] 

Other 0.217 0.0817 0.217 0.0834 0.212 0.0761 

[0.134] [0.133] [0.134] [0.133] [0.134] [0.133] 

Month Counter 0.0404*** 0.0367*** 0.0349*** 0.0299*** 0.0183 6.89e-05 

[0.0107] [0.0102] [0.0118] [0.0112] [0.0127] [0.0120] 

Observations 4415 4415 4415 4415 4415 4415 

()= Cor(ε1,ε2) 0.832 

0.832 

0.833 

0.833 

0.832 

0.832 Note: See Footnote for Table 1. In addition, all models have city level fixed effects. 
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Table 6 Effect of Deviating from Mandated Safe Levels of Ambient RSPM and SPM 
  Model (8) Model (9) 

VARIABLES Fever Cough Fever Cough 

Indoor Proxies          

Dirty fuel (e.g. coal) 0.0130 0.0997 0.00983 0.0973 

[0.0784] [0.0740] [0.0783] [0.0737] 

Unprocessed fuel (e.g. grass) 0.0267 0.0464 0.0352 0.0596 

[0.104] [0.100] [0.105] [0.0999] 

Outdoor Measures 

dRSPM = (RSPM-µRSPM)/100
†
 0.162*** 0.235*** 

[0.057] [0.053] 

dSPM
 
= (SPM-µSPM)/100

†
 0.104*** 0.154*** 

[0.0387] [0.0364] 

Child Level 

Child Age (months) -0.00577*** -0.00387*** -0.00576*** -0.00386*** 

[0.00148] [0.00141] [0.00149] [0.00141] 

Child is Male? (0,1) -0.0452 0.0107 -0.0414 0.0157 

[0.0494] [0.0473] [0.0495] [0.0475] 

haz_who -0.0319* -0.00779 -0.0318* -0.00765 

[0.0177] [0.0170] [0.0178] [0.0171] 

whz_who -0.0322 -0.0293 -0.0333 -0.0317 

[0.0212] [0.0195] [0.0212] [0.0196] 

Household Level 

Poorest Asset Quartile 0.121 0.265 0.124 0.272* 

[0.189] [0.162] [0.190] [0.163] 

Middle Asset Quartile 0.131 0.0847 0.132 0.0866 

[0.116] [0.110] [0.117] [0.111] 

Richer Asset Quartile 0.0978 0.127* 0.0949 0.121* 

[0.0720] [0.0695] [0.0718] [0.0693] 

Household lives in a Slum? 0.0120 0.0174 0.0295 0.0424 

[0.0568] [0.0542] [0.0575] [0.0551] 

Mother’s Education 

educlevel2 0.176* 0.206** 0.177* 0.206** 

[0.0953] [0.0900] [0.0958] [0.0906] 

educlevel3 0.212*** 0.270*** 0.219*** 0.280*** 

[0.0797] [0.0738] [0.0804] [0.0744] 

educlevel4 0.101 0.200* 0.119 0.226** 

[0.110] [0.104] [0.110] [0.104] 

Social Group 

SCST -0.109 0.0386 -0.106 0.0444 

[0.0781] [0.0701] [0.0782] [0.0703] 

OBC 0.105 0.0523 0.100 0.0468 

[0.0687] [0.0669] [0.0688] [0.0669] 

Religion 

Muslim 0.0779 -0.0378 0.0710 -0.0470 

[0.0688] [0.0680] [0.0691] [0.0684] 

Christian 0.149 0.0982 0.156 0.109 

[0.147] [0.138] [0.147] [0.139] 

Other 0.218 0.0840 0.218 0.0864 

[0.134] [0.133] [0.134] [0.133] 

Month Counter 0.0359*** 0.0317*** 0.0161 0.00234 

  [0.0108] [0.0102] [0.0138] [0.0132] 

Observations 4415 4415 4415 4415 

()= Cor(ε1,ε2) 0.832 

0.832 

0.832 

0.832 Note: † µRSPM & µRSPM indicate d NAAQS defined save level for RSPM and SPM as mentioned in Table 1. dRSPM and dSPM are scaled deviations from 
these levels to capture the health impacts of violating the safety norms. Read footnote for Table 2 for further clarifications. 
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Table 7 Predicted Probabilities at the Mean and Maximum of the Outdoor Air Pollution Distribution 

  Log (RSPM) Dev (RSPM) Dev (SPM) 

  Mean Max Mean Max Mean Max 

Pr(Fever = 1, Cough = 1) 0.119 0.324 0.063 0.152 0.088 0.240 

Pr(Fever = 1, Cough = 0) 0.030 0.027 0.033 0.037 0.035 0.030 

Pr(Fever = 0, Cough = 1) 0.069 0.164 0.050 0.113 0.068 0.173 

Pr(Fever = 0, Cough = 0) 0.782 0.485 0.854 0.697 0.809 0.557 
 


