
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ACIS 2016 Proceedings Australasian (ACIS)

2016

Managing Inherent Conflicts in Agile Distributed Development: Managing Inherent Conflicts in Agile Distributed Development:

Evidence from Product Development Evidence from Product Development

Ashay Saxena
Indian Institute of Management Bangalore, ashay.saxena@iimb.ernet.in

Shankar Venkatagiri
Indian Institute of Management Bangalore, shankar@iimb.ernet.in

Rajendra Bandi
Indian Institute of Management Bangalore, rbandi@IIMB.ERNET.IN

Follow this and additional works at: https://aisel.aisnet.org/acis2016

Recommended Citation Recommended Citation
Saxena, Ashay; Venkatagiri, Shankar; and Bandi, Rajendra, "Managing Inherent Conflicts in Agile
Distributed Development: Evidence from Product Development" (2016). ACIS 2016 Proceedings. 88.
https://aisel.aisnet.org/acis2016/88

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for
inclusion in ACIS 2016 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/acis2016
https://aisel.aisnet.org/acis
https://aisel.aisnet.org/acis2016?utm_source=aisel.aisnet.org%2Facis2016%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/acis2016/88?utm_source=aisel.aisnet.org%2Facis2016%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

Managing Inherent Conflicts in Agile Distributed
Development: Evidence from Product Development
Ashay Saxena
Information Systems
Indian Institute of Management Bangalore
Bangalore, India
Email: ashay.saxena@iimb.ernet.in

Shankar Venkatagiri
Decision Sciences & Information Systems
Indian Institute of Management Bangalore
Bangalore, India
Email: shankar@iimb.ernet.in

Rajendra K Bandi
Decision Sciences & Information Systems
Indian Institute of Management Bangalore
Bangalore, India
Email: rbandi@iimb.ernet.in

Abstract
Increasingly, software is being developed following agile approaches in a distributed setup. An agile
setting is typically characterized by flexibility, in order to accommodate changing customer demands
for continuous delivery of business value. A distributed setting brings about multiple demands for
stability, in terms of a push for clear specification of requirements and design, and a big picture
product definition. Therefore, implementing agile distributed development projects results in an
inherent conflict that must be reconciled. We conducted two case studies of such projects in the
domain of product development to examine the nature of conflict as well as the mitigating mechanisms
followed by the software teams. Our findings reveal that the domain of engagement drives the need for
flexibility, and the specific distributed team configuration drives the demand for stability.
Furthermore, the software teams achieve a balance between them through the project context, which is
characterized by an interaction of performance related and social elements.

Keywords

Agile Distributed Development, Flexibility-Stability Conflict, Ambidexterity, Case Study

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 1

1 Introduction
Up until the 1980s, organizations developed software using a plan-driven approach, with a big up-
front requirements exercise, followed by well-demarcated design, coding, testing and rollout stages.
This waterfall model had several drawbacks; chief among them was a reluctance to admit and
implement changes, which frustrated project sponsors. At the turn of the century, organizations began
to seek and embrace ‘better ways of developing software’ (Agile Alliance 2001). Agile as a philosophy
was expressly conceived to address the twin demands of accommodating volatile requirements from
the customer, while delivering working software in quick increments. A strong emphasis on team
collaboration necessitated extensive face-to-face communication; initially, agile practices assumed the
context of a single, collocated team. Over time, internet bandwidth became ubiquitous and
inexpensive, which made way for powerful video conferencing and group collaboration tools; the
restriction of collocation for agile software development has since been vastly relaxed.

Over the last two decades, organizations have begun to execute their projects using teams that are
located at geographically dispersed software development centres. This move has been triggered by
contingencies such as faster time-to-market, diverse competencies, and prevailing wage differences for
resources across the globe. The impact of globalizing development is that at an architectural level,
products must now be designed with a higher degree of modularity. This decouples software into
independent stages, so they can be designed, developed and tested at different sites across the globe.
Alternately, the software can be decoupled into features or components, which are developed at
multiple sites with a fair degree of autonomy. Keeping pace with these developments, agile efforts have
become globally distributed, with a mission to deliver high quality software incrementally, and in
multiple time-boxed iterations (Shrivastava & Date 2010).

Agile Distributed Development (ADD) is a model in which projects are implemented by following an
agile methodology, with teams that are located across multiple geographies. ADD engagements might
involve building an “off-the-shelf” product for a wide market, or servicing the needs of a specific client
with custom developed software. The “services” model has received considerable attention in literature
(e.g., Ramesh et al. 2006; 2012). Despite increasing attention from the software community, the
literature on ADD product engagement models is rather sparse. Such efforts involve building a new
platform, or incorporating features into an existing one; this demands innovative thinking from teams
that are distributed across geographies. It is commonly understood that the requirements of the end
customer are indirectly represented by a proxy group; the software producer bears complete
responsibility for any risks that arise (Fogelström et al. 2010). These characteristics have direct
implications on ADD practice, beyond the contingencies imposed due to the distributedness.

Existing literature suggests that executing agile projects in distributed setting presents an inherent
conflict (Ramesh et al. 2006, 2012; Lee et al. 2006). The distributed setting is characterized by spatial,
temporal, and configurational differences (O’Leary & Cummings 2007). Generally, dispersed team
members develop weak ties (Wong & Burton, 2000); they rely on ICT-mediated interactions to
coordinate their tasks. As a result, software teams operating in a distributed setup prefer to work
towards delivering what they know has been finalized upfront. On the other hand, agile teams must
work with frequent updates to the project plan that are dictated by changing requirements (Agile
Alliance 2001). They actively seek regular feedback from customers on their work, and in turn provide
rapid business value to them through short iterative cycles.

Whereas distributed teams seek stability to predictably meet the project objectives, agile teams require
flexibility to continuously update the software artefact and deliver functionality. Naturally, there is a
conflict between these demands. Dealing with such a conflict is not unique to the ADD setting.
Researchers (e.g., Gibson & Birkinshaw, 2004) have examined other domains that involve demands of
a similar nature for alignment and adaptability, across an entire business unit. However, the
contingencies experienced by software teams operating in a product development setup remains to be
examined. Hence, our study is driven by the research question:

RQ1: What is the exact nature of the flexibility-stability conflicts that arise in agile
distributed product development settings?

The capabillity of organizational ambidexterity provides guidance in balancing the trade-off. Ramesh
et al. (2006; 2012) point out the infeasibility of a structurally ambidextrous response (Tushman and
O’Reilly 1996), which involves splitting the organization into collocated agile and globally distributed
divisions. Given that the two aspects are inseparable for ADD, they suggest developing contextually
ambidextrous responses (Gibson & Birkinshaw 2004), to handle the problem in whole. For this, the
teams must innovatively synthesize responses that mix formal and informal elements. For example,

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 2

individuals in a software team could have a precise description of their roles and responsibilities, but
have the freedom to reach out to their counterparts across sites for any clarifications. Such responses
need to be further examined across ADD engagements to bring more clarity on the mechanisms
followed by software teams to manage the trade-off. Keeping our focus on product-oriented ADD
engagements, we state another research question:

RQ2: What mechanisms do software teams devise to achieve a balance between flexibility-
stability in agile distributed product development settings?

To address these questions, we have followed an exploratory case study approach. We analyze two
ADD project teams that are engaged in developing products concerning (1) a system-on-chip solution,
and (2) a healthcare cloud platform, respectively. The contribution of this work lies in providing
insights, in the form of nuanced clarity on the notion of flexibility-stability conflict and how contextual
ambidexterity forms the basis for devising enablers to mitigate such forces.

The remainder of the paper is organized as follows. The next section presents a review of the literature
on agile distributed development, software product development engagement, and a theoretical
background on the notion of ambidexterity. Section 3 describes the research design. Section 4 presents
the findings from our case studies that illustrate the inherent conflict faced in the setting, as well as the
enabling mechanisms to ambidexterity. We proceed to discuss these results in the light of earlier work.
The final section concludes by summarizing the contributions of this paper.

2 LITERATURE REVIEW
In line with the research objectives, we conduct an extant review of research on ADD. This is followed
by a review of the contingencies induced by software product development engagements to the ADD
setting. We conclude with an analysis of the literature on the theoretical framework of ambidexterity,
which guides our study.

2.1 Agile Distributed Development

The focus of the literature on ADD has been to explore the dynamics of agile principles and practices
within a distributed setup. Table 1 classifies this literature along three major themes:

Theme Research Focus
#1 Challenges that arise due to the distributed nature of ADD teams; the role of agile

principles in overcoming them (e.g., Dullemond et al. 2009)
#2 Adaptations to agile practices, specifically Scrum & eXtreme Programming (XP), such as

Scrum of Scrums, Remote Pairing to suit the ADD setting (e.g., Šmite et al. 2010)
#3 Control (e.g., Persson et al. 2012), communication (e.g., Alzoubi et al. 2016) and

coordination (e.g., Hole & Moe 2008) mechanisms appropriate to the ADD setting

Table 1: Major focus across the ADD research themes

A few studies (such as Lee et al. 2006; Ramesh et al. 2006; 2012) provide a preliminary picture of the
inherent conflict between flexibility and stability. Lee et al. (2006) suggest that agile methods, which
demand flexibility, must be adjusted to embrace increased discipline and rigor in distributed software
development. Along similar lines, Ramesh et al. (2006; 2012) suggest ‘balanced practices’ that enable
the software team to manage flexibility-stability trade offs. These studies have primarily considered
software services engagements, which directly involve the real customer at the development stage.
However, we have not come across studies that emphasize the nature of engagement, i.e. services or
product development, while examing the accommodations that have been devised by ADD teams.

2.2 Software Product Development Engagement

Generically, a software product refers to off-the-shelf software packages for the mass markets. Sawyer
et al. (1999) identify the problems of disconnect with the real customer for packaged software, and
suggest modifications to engineer product requirements in this domain. They maintain that the
development organization, which is the primary stakeholder, must be willing to engage with the
market over the long term, and source new requirements from it on an incremental basis. The software
product development possesses an iterative character, where the subsequent versions of the product
comprise of enhancements to the existing version and are frequently delivered to the market through
well-defined release cycles. The success of such a market-driven project is measured in terms of “sales,
revenue, market growth and the ability to create flexible product architecture that can support future
releases” (Fogelström et al. 2010).

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 3

Implications for ADD Practice

Table 2 highlights the implications of agile on market-driven product engagements, in the
developmental context of ADD.

Parameter Agile Philosophy Product Development
Perspective

Implication for ADD
setup

 (adapted from Fogelström et al. 2010)
Notion of Customer Bespoke (custom

software) perspective
arising from a client-
vendor partnership

Wide market base;
consisting of multiple
customers

Providing adequate
customer perspective
(through proxy groups)
across sites

Requirements
Elicitation

Evolved through
constant customer-
developer
collaboration

Development organization
itself arrives at the
requirements after a careful
analysis of market inputs
and their priorities

Each site is responsible
to source requirements
for their assigned
function

Understanding of
Value

Straightforward,
through regular
customer feedback

Complex, through multiple
tools such as Gap and
Customer value analysis

Each site must assess
the actual delivered
value for a release

Table 2: Key parameters for software engagement

At an aggregate level, there is a lack of alignment between philosophical tenets of agile and the needs
of product development. Rather than be perceived as risks to execute projects, the product
development perspectives represent essential constraints around which the practices of ADD have to
be crafted. For instance, a proxy customer group plays the dual role of gauging the right expectations
from the end users and accordingly guiding the software team during the course of product
development. The success of the effort is dictated by the abilities of this group and the directions
offered to the executing team. Such a constraint is accentuated further in a distributed setup, where
the proxy customer group would either be splintered across sites or its representatives stationed at
specific sites.

A holistic view of the hindrances faced in an agile distributed product development setting is crucial to
draw implications for project execution in the domain. From the review of literature on ADD, we infer
that the adaptations to agile have been discussed in the greater context of distributed development. We
believe that narrowing our focus to the product development space would be of significant interest to
the community.

2.3 Theoretical Basis: Ambidexterity

Ambidexterity, in the literal sense, refers to the state when an individual can use both the hands to
equal effect. While ambidextrous individuals are able to carry off special tasks, they struggle with
trade-off decisions. This notion has been extended to organizational studies since several decades.
Firms generally strive for two different things at the same time in their bid for survival as well as
continued growth: (1) exploring new markets as well as exploiting existing assets and capabilities, or
(2) aligning with current business demands as well as adapting to future environmental changes.
Ambidexterity relates to the specific ways adopted by organizations to handle the duality, such as the
creation of separate business units (Tushman & O’Reilly, 1996) or the provision of an appropriate
context for a particular unit (Gibson & Birkinshaw, 2004).

The literature has mainly focused on two types of ambidexterity trade-offs: (1) exploration-exploitation
at an organizational level, and (2) alignment-adaptability, also referred to as stability-flexibility (e.g.,
Vinekar et al. 2006), at a business unit/team level. As a response to mitigate these trade-offs, the
literature has presented two major forms of ambidexterity: (1) Structural (Tushman & O’Reilly 1996),
and (2) Contextual (Gibson & Birkinshaw 2004). Several of the exploration-exploitation trade-offs
have been managed by following the structural approaches, i.e. creation of “dual structures” (e.g.,
Benner & Tushman 2003; Tushman & O’Reilly 1996) where each sub-unit handles one part of the
duality. This approach does not have implications for ADD, which demands the tenets of agile and
distributedness in a single project.

Most of the alignment-adaptability trade-offs have been handled by following the contextual
approaches, viz. favourable context of a business unit enabling the adequate processes (e.g., Cao et al.
2013; Ramesh et al. 2012). This approach demands a project context, which is characterized by

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 4

performance management as well as social elements, for individuals to carry out their work.
Performance elements are defined by the behavior-framing attributes of discipline and stretch,
whereas social elements are described via the attributes of support and trust (Gibson & Birkinshaw,
2004). On the one hand, ‘discipline’ induces the team members to voluntarily strive to meet all the
expectations generated by their explicit or implicit commitments, while ‘stretch’ induces them to
voluntarily strive for more, rather than less, ambitious objectives. On the other hand, ‘support’ induces
the members to lend assistance and countenance to others, while ‘trust’ induces them to rely on the
commitments of each other. The interaction between these variables results in ambidextrous
capabilities. This approach has direct implications for the ADD setting, where the project context for
software teams should allow them to embrace agile and distributedness together.

The main discourse in the ambidexterity literature continues to be regarding how such a capability is
developed. Despite an over-arching emphasis on the structural and contextual strategic solutions, “few
studies have explained what people actually do to accomplish ambidexterity” (Huang et al. 2014).
Recent studies have placed an added emphasis on uncovering the enabling mechanisms to
ambidexterity, rather than restricting the focus to strategic choices (structural vs. contextual). Huang
et al. (2014) present evidence for site-shifting to explain the creation of ambidexterity. They describe
how a particular site gets shifted over time, through the development of a relationship between IT-
related practices and practitioners. In a similar vein, Gregory et al. (2015) conduct a micro-
foundational level study to explain the paradoxes faced by the managers in IT transformation
programs, and how they deal with them. In line with the call by Nosella et al. (2012), a clear gap exists
to analyze ambidexterity at a micro level, through the lens of organizational practices and routines.
This research takes a ‘practice-centered’ approach to bring out a nuanced understanding of the
mechanisms followed by the software teams to mitigate the conflicting forces.

3 RESEARCH DESIGN
We adopt a multiple case study research approach (Yin 2003) with embedded design (multiple units of
analysis per case) to understand the complex phenomenon of ADD. This allows us to examine the
research questions in their natural setting (Benbasat et al. 1987). We follow a positivist approach
informed by prior concepts and theory (i.e., contextual ambidexterity) identified from the literature.

3.1 Data Sources

The study involves two on-going software product development projects (see Table 3) that have
progressed well since their inception, and are being executed in an ADD format. These efforts exhibit
significant agile process and project maturity. These product engagements involve between 4 and 8
agile teams, working as clusters at independent sites. Both the projects have one common geographical
site (India), which results in similar base criteria, and a significant cluster of teams spread across
similar time zone differences (e.g. IST and CET). This helps us control for the spatial and temporal
aspects of distributedness. We choose two revelatory cases which are diverse for the sake of
generalizability to the context. A brief description of the case projects follows.

Proj ChipSys

This ADD effort is focused on developing software for a System-on-Chip (SoC) solution, which is
aimed at enhancing existing capabilities for a wireless and mobile platform. Typical users are the
leading mobile manufacturers, who in turn develop the end product (i.e. mobile phones) for the
consumer market. The solution is a technological improvement with additional features over the
predecessor version. It involves more than half-a-dozen cross-functional teams (XFTs) that are
working on independent modules. Each XFT is self-contained, and involves multiple teams to address
a set of capabilities. For instance, the multimedia module requires display/graphics, camera and video
capabilities. Dedicated software teams for each of these capabilities work from three independent
locations across Asia and Europe. This allows software teams to work on source code in parallel, and
later to merge the code once they are done. For the sake of our study, we shall classify this work
breakdown as autonomous.

The customer view is derived by collaborating between technical leads and quality assurance personnel
that are geographically dispersed and a collocated verification team; they seek and respond to inputs
from marketing representatives that are spread across the globe. The software teams at a given site
take complete ownership of the components that they develop. The teams’ abstract required
information with the other XFTs. To conduct the research investigation, we have interacted with the
teams based in India that handle display/graphics component. In addition, we have conducted a round
of discussion with the team members that are present at the other two locations.

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 5

Proj HealthSys

This ADD effort is focused on developing a “health cloud”, which is an end-to-end solution for
healthcare imaging applications. Typical users are medical practitioners and patients, who wish to
share medical information. The solution helps maintain patient history in the form of reports and
images, which are especially useful when the patient decides to switch from one healthcare provider to
another. Because the information will be stored on the cloud, the patient can easily direct the new
doctor towards his/her medical history. Project work involves building the platform that serves as the
infrastructure, as well as developing various applications that run on top of it. Software teams from a
particular site work on an entire layer of the architecture.

In contrast with Proj ChipSys, there are significant dependencies, because teams that are “upstream”
depend on the functionalities being worked on by teams that are “downstream” in the architecture. For
instance, the application layer depends on the services layer. This results in a tremendous push for
additional planning. For the sake of our study, we shall term this work breakdown as inter-linked.

The customer view is crafted by a dedicated portfolio management group (PMG), which is run by the
portfolio lead and a set of managers. To conduct the research investigation, we have interacted with
the teams from India that operate on the services layer. In addition, we have conducted a round of
discussion with distributed team members in Europe.

Characteristic Project Details
 Proj ChipSys Proj HealthSys

Domain Semiconductor Healthcare

Solution System-on-Chip (SoC) Industrial Cloud Based Platform
(PaaS)

Motivation to go agile Internal to a particular XFT Enterprise-wide agile mandate

Objective for choosing agile Time-to-market considerations Short release cycles

Iterations Release: Depends on the
functionality;
Sprint: 2 weeks

Release: 3 months;
Sprint: 2 weeks

Team Size Four Scrum teams of 6-8 people
working from three sites

Eight Scrum teams of 6-8
people working from three sites

Geographical team split
(Parentheses denote number of teams
at a given site)

India (2) – Germany (1) – China
(1)

India (3) – Hungary (3) –
France (2)

Table 3: Summary of Case Project Characteristics

3.2 Data Collection & Analysis Technique

We have collected data in a staggered manner across the projects. At any given point in time, the focus
has been restricted to a single project. Semi-structured interviews form the primary source of data,
each lasting for 45-60 minutes. The interviewer has tried to understand challenges that are faced in the
given setting, the nature of interactions with distributed teams and managerial practices that are
followed at the site. Respondents have diverse roles: manager, multiple development leads, scrum
master, product owner, and developer. In Proj ChipSys, the execution lead and technical lead have
themselves played the role of scrum master and product owner respectively. In Proj HealthSys, we
have come across additional roles, such as value stream engineer, release train engineer, and portfolio
members. An interview guideline has been developed for each of these profiles. Follow-up interviews
are conducted to gather additional information after analyzing earlier evidence. Besides this, other
sources of data include participant correspondence, site observations and project artifacts. These
multiple sources have helped triangulate our data and converge on a single explanation. The validity
and reliability of the data are assessed following the guidelines in Yin (2003).

We employ the Atlas.ti data analysis software to develop codes from the collected data. We follow
coding techniques suggested by Corbin & Strauss (2008), for theory development. Constant
comparative method is deployed to ensure repeated comparison of newly collected data with the
previous one. Each analysis is documented in the form of a report, which serves as inputs for cross-
case analysis.

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 6

4 FINDINGS
One aspect is common to the ADD setup across our projects: multiple teams operating at independent
sites that are separated by geographical boundaries.

4.1 Conflict: Flexibility-Stability

The case settings reveal that the type of distributed configuration (autonomous versus inter-linked
teams) has a direct bearing on the demand for stability. Because distributed teams tend to seek
increased clarity about project objectives upfront, the ways in which they are structured has an impact
on their work execution goals.

We also witness that the mode of engagement, i.e. product development, has a direct effect on the need
for flexibility. Whereas agile emphasizes constant customer involvement, our case settings are guided
by proxy groups. Subsequently, the onus lies on internal software teams to negotiate and reach a
consensus on issues, as well as to seek regular feedback from the proxy customers on the work backlog.

Proj ChipSys: Autonomous split

Given an autonomous configuration, stability manifests in software teams trying to establish a strong
work identity as a specialized unit at an independent site. It announces ‘what they are known for in the
overall program’. In the words of a Software Project Manager (SPM):

“We are emphasizing to the organization that we want to have a Centre of Excellence (CoE); the
CoE will be the key focus for a business unit and a particular location.”

A conscious attempt is made to reap some of the benefits from the geographical spread of the teams.
ChipSys ensures that the teams are located (1) closer to market and/or (2) receive benefit from core
competencies of individuals from a particular region. As remarked by the Execution Lead:

“Our ideal preference is co-location/single location but we do not want to lose the advantage of
getting a diversified view when the teams are spread. We try to achieve a balance.”

The team division is such that one entire component - display/graphics - is comprehensively handled
in India, whereas other components, such as camera and video, are handled at distinct locations in
Europe and Asia respectively.

Flexibility manifests when teams must manage volatile dependencies, primarily from an ever-
changing market. A lack of real customer involvement results in requirements being indirectly
conveyed and constantly reviewed by the proxy customer; multiple change requests on a given module
cause frequent re-alignments of software teams. To ensure smooth progress, component teams have to
come together on a sporadic rather than a planned basis. As explained by the Execution Lead:

“Across components, there may be a dependency, like both camera and video have to send
buffers of the video content to display. So, we set up a specific interface, in the form of an
android framework. And there are pre-defined rules: What is the other team’s exit criterion?
What is our entry criterion? We stitch our pieces, and that’s where the validation team and our
team test […]”

Such a level of reliance on another team’s activity means that any slippages might affect the work of
the teams involved. If dependencies are not handled properly, then it will delay work movement.
Moreover, volatile requirements impact the alignment of work of one XFT with other XFTs that handle
primary modules. As an illustration, memory is the central building block that directly impacts how
multimedia aspects of the SoC function; any change to the specifications of the memory module by a
particular XFT affects the work of several XFTs, including multimedia. In such a scenario, it becomes
critical to follow specific agile practices in spirit. As explained by the SPM:

“The point here is: the discussion on deliverables, during sprint planning of other XFTs, may
actually evolve. They have a daily alignment already as part of a particular XFT. They are on
continuous integration. How will we align cross-XFTs dependencies?”

Due to such alignment challenges, our interactions reveal instances when the software teams are not
able to keep up with their commitments. There are slippages in meeting the target date, while making
room for accommodating the outputs of other software teams. The outputs are often received when the
latter team is involved with other work. Despite their commitment to the sprint and dedicated focus as
a specialized unit, the team cannot push the activity on the received work beyond a particular timeline.
They end up creating bandwidth to receive the work and take the task forward, by dropping tasks that
have been planned.

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 7

Proj HealthSys: Inter-linked split

In this distributed configuration, stability concerns multiple software teams working from an
independent site striving towards cohesively managing a layer of the architecture. We categorize the
teams as “producers” who are responsible to provide the infrastructure, which “consumers” leverage to
develop applications.

Collectively, the India teams (producers) work as a single collaborative unit. As the Functional Lead
explains:

“We are open to share expertise across the teams that sit here and ensure that all teams are
brought to a level, where queries can be handled independently by anyone.”

The Scrum Master highlights another evidence in support of cohesion:

“We [software teams sitting in India] have separate backlogs to work on. However, we work as
a cluster; once there was an instance when two people [developers] were pulled from one team
and asked to work on another team.”

Subsequently, the software teams ensure that knowledge is distributed across teams at a particular
site. In the words of the Technical Lead:

“There are 3 teams here that are responsible for handling storing and retrieving operations.
They keep interchanging the responsibilities across iterations so that there is no knowledge silos
created.”

In this mode of ADD in product development, flexibility again concerns software teams managing
volatile requirements due to the presence of the proxy customer (in the form of PMG). The Product
Owner of the producer team considers consumer team priorities and interacts with the PMG to refine
the backlog. In his words:

“Definitely, it [backlog prioritization] is from the workflow perspective – consumer team
requirements are top priority. The portfolio group also comes up with a list of prioritized
features. Those two together will help us decide what features we have to work on. Based on the
bandwidth, we will identify the next set of features.”

Although the expectations are well defined through consultations with the PMG at the iteration
planning stage, change requests that arise while an iteration is underway are inevitable. In the words
of the Value Stream Engineer:

“Change will always be there. But, we do control it. Change requests from PMG go through a
tough discussion and conscious effort is made to minimise the impact of changes on teams.”

During the instances of such change requests, the producer team faces the burden of re-aligning their
work to absorb changes. The Scrum Master remarks:

“Change requests will keep coming in. If it is something urgent, we take a call depending on our
bandwidth. Product Owners will be there – they will clarify what needs to be committed.”

Consequently, the setting places an added thrust on the consumer teams to ensure that they regularly
recognize the work done by the producer teams. This enables the software development work to
proceed in parallel, and also to embrace the contingencies of the change requests.

4.2 Achieving a balance between Flexibility-Stability

In a bid for software teams to achieve a balance between the conflicting forces, ambidexterity is seen as
a natural response (Ramesh et al. 2012). Based on the guiding theoretical frame of contextual
ambidexterity (Gibson & Birkinshaw 2004) and its applicability to the ADD setting (cf. Ramesh et al.
2012), we elaborate on the project context elements from the case settings. The discussion is
interspersed with examples of managerial practices that enable these elements.

As highlighted in our literature review, the project context consists of performance (“hard”) as well as
social (“soft”) elements. In our case settings, we observe that the performance elements (characterized
by discipline and stretch) manifest in the form of the extent of role specification within software
teams. We also witness that the social elements (characterized by support and trust) surface through
the nature of boundary spanning across sites.

Overall, we observe that the case settings achieve a balance between flexibility-stability through an
interaction of “hard” and “soft” elements.

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 8

Proj ChipSys

The case setting specifies sharp roles for team individuals. This allows each individual to take specific
responsibilities within the software team. For instance, software project manager is responsible to
track the status of project and coordinate across XFTs, whereas execution lead handles the
responsibility to look after the overall work progression by the particular XFT.

The setting places an emphasis on the entire software team members to span the cross-site boundary.
They also have the autonomy to use their own judgment to overcome obstacles, including coordination
conflicts. As the Product Owner explains:

“In most cases, individuals knows who to talk to, and do whatever is required to solve an issue;
it doesn’t require micro-management.”

Overall, the setting presents ample evidence for the existence of sharply defined roles and
responsibilities yet provides freedom and autonomy at multiple levels for individuals to take
boundary-spanning decisions.

There are several managerial practices that enable such a context. Consider the practice of planning
where teams ensure that a feasible amount of work that can be completed is taken up for a particular
sprint: although the execution lead controls the flow of stories, team members conveniently update
and/or add new stories to the board depending on the contingencies that have already been discussed
with the teams at different sites, in a bid to accommodate change requests from the proxy customer.

Another practice that supports the specified context concerns joint de-bugging sessions: although the
execution and component leads lay out the road map for the integration activity, software teams -
specifically developers - jointly work on handling integration issues. Additionally, developers have the
freedom to organize one-on-one sessions with the counterparts from the other software team if a
critical feature needs to be discussed. In the words of a developer:

“We have some milestones for a feature. If we have inter-dependency, then we can schedule a
periodic meeting with the other team [whoever is working] to finalize the feature and status
update.”

Proj HealthSys

The case setting relies on overlap in role specifications for key positions such as the manager and the
scrum master; multiple individuals share the responsibility within the team. For instance, the overlap
is evident in the designations such as the value stream engineer and the engineering manager. Both are
responsible to ensure that the project progresses as per plan. Additionally, the presence of release train
engineer, who is responsible for planning work in a given iteration and ensuring that dependencies are
ably created, communicated and met, liaisons with the scrum master to address impediments faced by
the teams.

The setting provides an evidence for a designated boundary spanner individual. The scrum masters at
an independent site discuss project matters between themselves, but the responsibility to coordinate
with the other site lies with the release train engineer. As the Engineering Manager suggests:

“There is a local Scrum of Scrums, where the scrum masters from a given site participate. They
may not be plugged in so much into the global team. But, the release train engineer is very much
in alignment with the global team.”

Overall, the setting demonstrates significant overlap in roles and responsibilities across several team
members but the presence of a specific boundary spanner individual across sites.

There are several managerial practices that enable such a context. For instance, consider the practice
of Scrum of Scrums (SoS) and Release Train Engineer (RTE) Sync-up: SoS is held locally at a given
site, where all the scrum masters come together and discuss progress of the individual team.
Subsequently, RTE synthesizes the discussion and takes it forward. In essence, most of the team
members share responsibility over SoS, while the RTE gets in touch with the global counterpart across
site. RTE’s work in close collaboration throughout the sprint. This view is further substantiated
through our discussion with the local RTE:

“We do have a regular sync-up, like we used to have twice a week earlier, but it’s not like we
only stick to those timings. For e.g., as and when I have something, we just get into a call and
close it.”

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 9

Review practice where teams demonstrate their work and get feedback from the proxy customer group
also enables the specified project context: several members across the teams at a given site take the
onus to prepare the demo presentation, whereas one designated individual presents to a global
audience (PMG and business leaders) during the meeting. Subsequently, the feedback is received
contingent upon the state of the project and refined market expectations.

5 DISCUSSION
Ambidexterity theory has been recognised as a valuable approach to understand the dynamics of
conflict faced by organizations, business units and/or teams. In the field of software development,
limited research (such as Lee et al 2006; Ramesh et al 2006; 2012) has attempted to provide clarity on
the nature of conflict faced, as well as the mitigation techniques adopted by the teams. We discuss our
research in relation to these works.

Lee et al. (2006) focus on coping strategies realized by the software teams to mitigate conflicting
demands faced in globally distributed setup. They characterize these strategies along two dimensions:
(1) whether the strategy concerned initiation or execution phase of the project lifecycle, and (2)
whether the strategy focused on task-related, people-related or technology-related aspects. Ramesh et
al. (2006; 2012) suggest practices in the form of tangible and intangible processes, grouped such that
they represent specific mitigation strategies to the conflicting demands faced in ADD setting. They
remain focused on mapping such strategies to the well-known antecedents (discipline, stretch, support
and trust) to ambidexterity.

Our work is based on these predecessors. However, rather than directly focusing on the strategies
adopted by the software teams, we have chosen, as our starting point of analysis, the notion of project
context. We elucidate the project context for the setting; rather than continue to restrict attention to
the general variables of discipline, stretch, support and trust. In this regard, our research brings
forward the concepts of (1) extent of role specification and (2) nature of boundary spanning. The case
settings reveal that the interaction between these two concepts characterizes a particular ADD project
context. We provide exemplars for how these concepts are enabled by the managerial practices, which
allows the software team to achieve a balance between conflicting forces present in the setting.

6 CONCLUSION
The contribution of this paper lies in providing insights beyond the earlier conceptualization of
flexibility-stability conflict faced in the ADD setting. Our research reveals that the domain of
engagement, i.e. product development in this case, drives the demand for flexibility, whereas specific
distributed team configuration, autonomous vis-à-vis inter-linked split, drives the need for stability.
Furthermore, we elucidate the concept of contextual ambidexterity for the ADD setting by explaining
what software teams actually do to achieve a balance between the conflicting demands. At a broad
level, empirical data from the two case projects suggests that the project context, characterized by the
concepts of role specification and boundary spanning, which is enabled through some of the
managerial practices followed by the software teams lead to development of ambidextrous capability.
The findings should provide an exemplar to assist future ADD implementations in practice.

7 References
Agile Alliance. 2001. “Agile manifesto & principles.” http://agilemanifesto.org/ Retrieved 1 July, 2016.

Alzoubi, Y.I., Gill, A.Q., & Al-Ani, A. 2016. “Empirical studies of geographically distributed agile
development communication challenges: A systematic review,” Information & Management
(53:1), pp. 22-37.

Benbasat, I., Goldstein, D.K., & Mead, M. 1987. “The case research strategy in studies of information
systems,” MIS quarterly (11:3), pp. 369-386.

Benner, M.J., & Tushman, M.L. 2003. “Exploitation, exploration, and process management: The
productivity dilemma revisited,” Academy of management review (28:2), pp. 238-256.

Cao, L., Mohan, K., Ramesh, B., & Sarkar, S. 2013. “Evolution of governance: achieving ambidexterity
in IT outsourcing,” Journal of Management Information Systems (30:3), pp. 115-140.

Corbin, J., & Strauss, A. 2008. Basics of qualitative research: Techniques and procedures for
developing grounded theory. Thousand Oaks: California, CA, USA.

Australasian Conference on Information Systems Saxena et al.
2016, Wollongong Conflicts in Agile Distributed Development

 10

Dullemond, K., van Gameren, B., & Van Solingen, R. 2009. “How technological support can enable
advantages of agile software development in a GSE setting,” in Fourth IEEE International
Conference on Global Software Engineering 2009, pp. 143-152.

Fogelström, N.D., Gorschek, T., Svahnberg, M., & Olsson, P. 2010. “The impact of agile principles on
market driven software product development,” Journal of software maintenance and
evolution: Research and practice (22:1), pp. 53-80.

Gibson, C.B., & Birkinshaw, J. 2004. “The antecedents, consequences, and mediating role of
organizational ambidexterity,” Academy of management Journal (47:2), pp. 209-226.

Gregory, R.W., Keil, M., Muntermann, J., & Mähring, M. 2015. “Paradoxes and the Nature of
Ambidexterity in IT Transformation Programs,” Information Systems Research (26:1), pp. 57-
80.

Hole, S., & Moe, N.B. 2008. “A case study of coordination in distributed agile software development,”
in European Conference on Software process improvement, pp. 189-200. Springer Berlin
Heidelberg.

Huang, J., Newell, S., Huang, J., & Pan, S.L. 2014. “Site-shifting as the source of ambidexterity:
Empirical insights from the field of ticketing,” The Journal of Strategic Information Systems
(23:1), pp. 29-44.

Lee, G., DeLone, W., & Espinosa, J.A. 2006. “Ambidextrous coping strategies in globally distributed
software development projects,” Communications of the ACM (49:10), pp. 35-40.

Sawyer, P., Sommerville, I., & Kotonya, G. 1999. “Improving market-driven RE processes,” In VTT
Symposium Vol. 195, pp. 222-236.

Nosella, A., Cantarello, S., & Filippini, R. 2012. “The intellectual structure of organizational
ambidexterity: A bibliographic investigation into the state of the art,” Strategic
Organization (10:4), pp. 450-465.

O'Leary, M.B., & Cummings, J.N. 2007. “The spatial, temporal, and configurational characteristics of
geographic dispersion in teams,” MIS quarterly (31:3), pp. 433-452.

Persson, J.S., Mathiassen, L., & Aaen, I. 2012. “Agile distributed software development: enacting
control through media and context,” Information Systems Journal (22:6), pp. 411-433.

Ramesh, B., Cao, L., Mohan, K., & Xu, P. 2006. “Can distributed software development be
agile?” Communications of the ACM (49:10), pp. 41-46.

Ramesh, B., Mohan, K., & Cao, L. 2012. “Ambidexterity in agile distributed development: an empirical
investigation,” Information Systems Research (23:2), pp. 323-339.

Shrivastava, S.V., & Date, H. 2010. “Distributed Agile Software Development: A Review,” Journal of
Computer Science & Engineering (1:1), pp. 10-17.

Šmite, D., Moe, N.B., & Ågerfalk, P.J. 2010. “Fundamentals of agile distributed software development,”
in Agility Across Time and Space, pp. 3-7. Springer Berlin Heidelberg.

Tushman, M.L., & O’Reilly III, C.A. 1996. “Managing evolutionary and revolutionary
change,” California Management Review (38:4), pp. 8-28.

Vinekar, V., Slinkman, C.W., & Nerur, S. 2006. “Can agile and traditional systems development
approaches coexist? An ambidextrous view,” Information systems management (23:3), pp. 31-
42.

Wong, S.S., & Burton, R.M. 2000. “Virtual teams: what are their characteristics, and impact on team
performance?” Computational & mathematical organization theory (6:4), pp. 339-360.

Yin, R. K. 2003. Case study research: Design and methods, (Third edition). Thousand Oaks: Sage.

Copyright
Copyright: © 2016 Ashay Saxena, Shankar Venkatagiri, Rajendra K Bandi. This is an open-access
article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0
Australia License, which permits non-commercial use, distribution, and reproduction in any medium,
provided the original author and ACIS are credited.

	Managing Inherent Conflicts in Agile Distributed Development: Evidence from Product Development
	Recommended Citation

	Microsoft Word - ACIS 2016 Paper Submission-Camera Ready Draft_Final.docx

