
Heuristics for the Assortment Planning Problem
under Ranking-based Consumer Choice Models

We model a retailer’s assortment planning problem under a ranking-based choice model of consumer pref-

erences. Under this consumer choice model each customer belongs to a type, where a type is a ranking of

the potential products by the order of preference, and the customer purchases his highest ranked product

(if any) offered in the assortment. In our model we consider products with different price/cost parameters,

we assume that the retailer incurs a fixed carrying cost per product offered, a substitution penalty for each

customer who does not purchase his first choice and a lost sale penalty cost for each customer who leaves

the store empty-handed. In the absence of any restrictions on the consumer types, searching for the optimal

assortment using enumeration or integer programming is not practically feasible. The optimal assortment

has very little structure so that simple greedy-type heuristics often fail to find the optimal assortment and

have very poor worst case bounds. We develop an effective algorithm, called the In-Out Algorithm, which

always provides an optimal solution and show numerically that it is very fast, e.g., more than 10,000 times

faster than enumeration on a problem with 20 products.
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1. Introduction

In this research, we consider a stylized choice model in which consumers preferences are defined

based on their ranking of products that could potentially be included in the assortment. We study

a retailer’s product selection process under this ranking-based consumer choice Model (RBM)

in the presence of fixed, substitution, and lost sale penalty costs, investigate the existence of a

simple structure for the optimal assortment, examine the performance of greedy-type heuristics,

and propose an effective algorithm to solve the problem optimally.

Under the RBM enumerating all possible assortments or using integer programming are practi-

cally infeasible methods when the number of potential products to choose from is large. Because

the problem is NP-hard, an optimal assortment cannot generally be obtained by ranking products

in terms of popularity or profitability. We further show that it is not possible to simplify the search

for an optimal assortment by eliminating dominated products. We also show that the optimality

gap of greedy-type heuristics can be as large as 100% in our problem which, unlike previous work,

includes fixed, substitution and lost sale penalty costs.

We develop a novel algorithm called the ‘In-Out Algorithm’ which always obtains an optimal

assortment. This algorithm rests on an iterative procedure which at each step includes/excludes
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products that improve/worsen the profitability of every assortment. Despite having a complexity

equal to that of the enumeration method, we show via an extensive numerical analysis that in

practice, the In-Out algorithm is very quick. For instance, with 20 products, this algorithm is on

average more than 10,000 times faster than the enumeration method and provides a solution in

less than 4 minutes for product categories with up to 25 products.

Apart from the RBM, researchers in the past have adopted a variety of consumer choice models

to understand structural properties of optimal assortments. For example, under the Multinomial

Logit model, van Ryzin and Mahajan (1999) show that, when the prices of the products are the

same, the optimal assortment is a popular set, i.e., a set with a certain number of the most popular

products. Li (2007) extends their results to products with different prices and costs parameters

and finds that the optimal solution is a profitable set, i.e, a set with a certain number of the

most profitable products (when store traffic is continuous). Gaur and Honhon (2006) study the

assortment problem under the locational choice model with a unimodal distribution of preferences,

and find that the coverage intervals of the products must be adjacent. In contrast to the above

models, simple structural properties are hard to establish under the RBM.

Despite the lack of structural results the RBM is an appealing way to model consumer choice. It

is a very general model in the sense that with certain restrictions on the parameters of the model

we can recover the Multinomial Logit, the locational choice model, the downward substitution

model (see Honhon et al. (2012b) for examples). In addition, the RBM is an intuitive representation

of consumers’ choice making process. A number of researchers have used this model to obtain

insights from theoretical work and apply it in a practical setting. For example, Mahajan and van

Ryzin (2001b) study inventory competition between multiple firms offering substitutes, Mahajan

and van Ryzin (2001a) develop a simulation-based method to search for the optimal assortment

under stock-out based substitution, Smith et al. (2009) solve a product introduction problem under

a Stackelberg game, and Honhon et al. (2012a) consider the assortment planning problem under

stock-out based substitution with fixed proportions of customers of each type. Honhon et al. (2012b)

consider four practically motivated special cases of the RBM, namely, the one-way substitution,

location, outtree and intree preference models, and obtain efficient methods to get the optimal

assortment in the same setting as ours. In contrast to the above, we do not put any restriction

on the RBM and devleop a general purpose algorithm which can be used to obtain the optimal

solution when the number of products to choose from is not too large (less than 30).

To offer empirical justification for the use of a RBM we refer to Farias et al. (2011) where the

authors use a non-parametric method to estimate the RBM from limited data, such as sales data or
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conjoint survey data. We also refer to Yunes et al. (2007), which illustrates an application of RBM

model to streamline the originally vast product lines at Deere & Company. At Deere & Company,

Yunes et al. (2007) construct the ranking based model, which is called customer migration model,

based on customer segment information and utilities obtained from conjoint studies. In general if

conjoint survey data is available, as in Deere & Company, it is relatively straightforward to come

up with consumer types and their ranking lists based on the part-worth utilities calculated from

the survey (see Green and Krieger (1987) for an illustration).

The performance and computational efficiency of simple heuristics has been explored to a great

extent in the product selection and assortment planning literature. For example, Green and Krieger

(1985) study the performance of the greedy heuristic; Dobson and Kalish (1988) develop a two-

stage heuristic where products are assigned to consumer segments in stage 1 then re-assigned to

increase profits in stage 2, and McBride and Zufryden (1988) formulate the product selection prob-

lem as a binary integer programming model which solves certain practically relevant instances of

the product selection problem to optimality in a computationally efficient manner. The setting in

which a manufacturer chooses the set of products to offer for sale has been traditionally known as

product line design problem and conjoint survey data has been shown to be useful in solving for

a manufacturer’s optimal product line design; for example, Kohli and Sukumar (1990) propose a

dynamic programming-heuristic using attributes as stages and attribute levels as states. Dobson

and Kalish (1993) develop two new greedy-type heuristics, and Nair et al. (1995) propose heuristics

based on a beam search approach. See also Balakrishnan and Jacob (1996), Alexouda and Paparri-

zos (2001), Steiner and Hruschka (2003), Balakrishnan et al. (2004) on the use of genetic algorithms

for this problem. Belloni et al. (2008) develop a Lagrangian relaxation method for both the product

selection problem and product line design problem and uses it to compare the performance of a

number of heuristics.

While there are parallels between the product line design problem and assortment planning

problem, our contribution is most relevant in the context of the retail assortment selection problem.

Our work differs from the above in the explicit consideration of the impact of fixed, substitution,

and lost sale penalty costs on the performance of the heuristics that are used to obtain retail

assortments. We show that simple heuristics can perform arbitrarily bad and propose a novel

algorithm (the ’In-Out Algorithm’), which always provides the optimal assortment and is in practice

very fast. We also study the impact of a misspecification in the model on the performance of the

chosen solution. We find that the optimal assortment is very sensitive to the consumer choice

model, profit margins and fixed cost.
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In order to obtain our results we make an important and reasonable assumption in our research:

that selling prices are fixed. It is not uncommon for retailers to adopt an MSRP (manufacturer’s

suggested retail price) price strategy; evidence from the data collected by Carlton and Chevalier

(2001) based on the fragrance product market shows that a number of stores (namely upscale beauty

and department stores) charge MSRP for the products they sell. While contractually adhering

to MSRP is rare, supplying exclusive products to retailers who adopt an across-the-board no-

discounting policy is not unheard of (see Carlton and Chevalier (2001)). Literature in the operations

management area also lends support to the assumption of exogenous prices, see, for example, van

Ryzin and Mahajan (1999), Smith and Agrawal (2000), and Gaur and Honhon (2006).

The rest of the paper is organized as follows. We present our model in §2 and then describe

the optimization problem in §3. In §4 we discuss four heuristics. We develop the In-Out algorithm

in §5 followed by our numerical study to demonstrate the effectiveness of the algorithm in §6. §8

concludes our work.

2. Model

We use bold characters to represent vectors and subscripts to denote their components, e.g., τj is

the j-th component of vector τ . Sets and matrices are denoted by capital letters. |S| denotes the

cardinality of set S.

We begin by describing how consumers make choices. Consider a product category consisting

of n potential products, indexed 1 to n, where N = {1, . . . , n} and let 0 denote the no-purchase

option. In order to define the purchase behavior of consumers we define a consumer type, which

is a vector of products that the customer is willing to purchase, arranged in decreasing order of

preference. For example, a customer of type (1,2,4) has product 1 as his first choice, product 2

as his second choice, product 4 as his third choice, and he never purchases products that do not

belong in his type (3 and 5 to n). In general, a type τ is a vector (τ1, ..., τt) of product indices

such that {τ1, ..., τt} ⊆ N and 0 ≤ t ≤ n. The ‘null’ type is such that t = 0 and corresponds to

customers who never purchase a product from the product category.1 Let T be the set of all possible

types, i.e., T = {τ = (τ1, ..., τt) : 0≤ t≤ n, τt ∈N and τ1 6= τ2 6= .... 6= τt}. In addition, let ατ be the

proportion of customers of type τ ∈ T in the customer population, such that
∑

τ∈T ατ = 1, and

T + = {τ ∈ T : ατ > 0} be the set of consumer types that exist in the population. In practice, the

1 Note that the type of a customer can result from a utility maximization procedure as in Mahajan and van Ryzin
(2001a). Let U(x, j) be utility assigned by customer x to product j for j = 1, ..., n and let the utility from not
purchasing anything be zero, i.e., U(x,0) = 0. Let U(x, [k]) be the k-th greatest value in {U(x,0),U(x,1), ...,U(x,n)},
the type of customer x is (τ1, ..., τt) if U(x, τk) =U(x, [k]) for k= 1, ..., t and U(x,0) =U(x, [t+ 1]).
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number of types that exist in a population is clearly less than or equal to the theoretically possible

number of types, i.e. |T +| ≤ |T |=
∑n

j=0C
j
nj! =

∑n

j=0
n!

(n−j)! . For example, for n= 10, there is a total

of 9,864,100 possible types!

We assume consumer-driven substitution, that is, customers decide which products they want to

buy from the set of available products; in contrast, under firm-driven substitution the firm allocates

products to customers based on the customers’ preferences. Consider an assortment of products

S ⊆N and product j ∈ S. A customer of type τ for whom product j is the k-th choice, i.e., such

that τk = j, picks product j for set S if and only if products τ1, ..., τk−1 do not belong to set S. Let

P k
j (S) denote the proportion of customers who pick product j from assortment S and for whom

product j is the k-th choice. We have:

P k
j (S) =

{∑
τ=(τ1,...,τt):t≥k,τk=j,

τ1,...,τk−1 /∈S
α(τ1,...,τt) if j ∈ S

0 otw.
(1)

When k > n− |S|+ 1, we have P k
j (S) = 0 as one of the first k− 1 choices of every customer must

be offered in S. Let P0(S) = 1−
∑

j∈S
∑n−|S|+1

k=1 P k
j (S) denote the proportion of customers who do

not pick anything from set S.

Let πj denote the profit margin on a product j. Retailers generally incur a fixed cost, denoted

by the parameter K, of carrying a product in their assortment. In addition, we assume that the

retailer bears a substitution penalty cost for every customer who purchases a product that is not

his first choice, and that the penalty is higher when he purchases a lower ranked product. More

specifically, if a customer buys his k-th favorite product, the penalty is f(k) where f is an non-

decreasing function, e.g., f(k) = b(k − 1) where b ≥ 0.2 We do not make any assumption about

f(k), so it is possible that πj − f(k)< 0 for some j, k ∈ {1, ..., n}, meaning that the retailer may

lose money when a customer buys product j as a k-th choice. Also let p denote a lost sale penalty

cost which measures the disutility experienced by a customer who leaves the store empty-handed.

We do not make any assumption regarding the relative values of f(k) and p, however, one might

argue that p≥ f(n) makes sense for most product categories, i.e., the penalty for not satisfying a

customer is larger than the penalty for making him substitute to his least favorite product.

The retailer operates in a make-to-order setting, that is, she does not carry inventory of the

products. Without loss of generality we assume that mean demand is equal to 1 in the product

category. Given the consumers’ choice structure and the price and costs parameters of the products,

the retailer’s problem of finding the optimal assortment S∗ can be represented as follows:

Π(S∗) = max
S⊆N

Π(S).

2 Note that it makes sense to have f(1) = 0 but we do not require this condition to hold.
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where Π(S), the profit associated with the assortment S, is given by

Π(S) =
∑
j∈S

n−|S|+1∑
k=1

P k
j (S)[πj − f(k)]−P0(S)p−K|S|

=
∑
j∈S

n−|S|+1∑
k=1

P k
j (S)[πj + p− f(k)]− p−K|S|. (2)

Note that our results also apply to a make-to-stock setting with assortment-based substitution

when store traffic is continuous (see Honhon et al. (2012b) for a proof of the equivalence of the two

settings).

Notation Definition
n number of potential products
N set of potential products
τ generic consumer type
T set of possible types
T + set of existing types
S generic assortment
πj product j profit margin
f(·) substitution penalty function
p lost sale penalty cost
K fixed cost
P k

j proportion of customers buying j as their k-th choice
P0 proportion of customers buying nothing
Π profit

Table 1 Notation

3. Optimization

In theory, it is always possible to find an optimal assortment by enumeration, that is, by computing

the profit associated with each of the 2n possible sets S ⊆N and looking for the set with the highest

profit value. However, this solution method is very time-consuming for large n. Honhon et al.

(2012b) show that the complexity of the algorithm for computing the purchasing proportions P k
j (S)

for j, k = 1, ..., n for a given assortment S is O(|T +|n). Hence, the complexity of the enumeration

method is (|T +|n2n). Table 11 shows the time it takes to solve a (randomly generated) numerical

problem using the enumeration method as a function of n and |T +|. For n= |T +|= 20 it takes on

average more than 24 hours to solve.

Another approach is to formulate the retailer’s optimization problem as an integer programming

model. Let xj for j = 1, ..., n be binary variables that are equal to 1 if product j is included in the

assortment and 0 otherwise. For all τ = (τ1, ..., τt) ∈ T and i= 2, ..., t, let yττi be binary variables

that are equal to 1 if customers of type τ buy product τi (their i-th choice) from the assortment

and 0 otherwise.3 The retailer’s optimization problem can be formulated as follows.

3 Note that we do not require a binary variable for the case where a customer buys his first choice product, since
making a product available, that is setting xj = 1, implies that the customer for whom it is the first choice buys it.
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max
∑

τ=(τ1,...,τt)∈T

[(πτ1 − f(1) + p)xτ1 + (πτ2 − f(2) + p)yττ2 + ...+ (πτt − f(t) + p)yττt ]ατ − p−
n∑
j=1

Kxj

s.t. xτ1 +
k∑
j=2

yττj ≥ xτk for τ = (τ1, ..., τt)∈ T , k= 2, ..., t (3)

yττj ≤ xτj for τ = (τ1, ..., τt)∈ T , j = 2, ..., t (4)

xτ1 +
t∑

j=2

yττj ≤ 1 for τ = (τ1, ..., τt)∈ T (5)

xj, yττk ∈ {0,1} for j = 1, ..., n, τ = (τ1, ..., τt)∈ T , k= 2, ..., t (6)

Constraints (3) ensures that a customer gets his j-th choice product only if his 1st to (j− 1)-th

choice products are not available. Constraints (4) guarantees that a customer buys a product that

is available in the assortment. Constraints (5) ensures that each customer of type τ = (τ1, ..., τt)

buys at most one product. For another mathematical programming formulation of the product

selection , see for example McBride and Zufryden (1988) and Anupindi et al. (2008). This integer

program has an embedded uncapacitated plant location model in it since constraints (4) to (6)

have the same form as those in an uncapacitated plant location problem (see Cho et al. (1983)).

Therefore, the retailer’s optimization problem is NP-hard. It follows that simple sorting methods

will often fail provide an optimal solution. In what follows, we illustrate this fact with some simple

examples in order to provide some intuition about the problem.

It is possible to simplify the above integer programming model, when not all possible customer

types exist in the population, i.e., when T + is a strict subset of T . For example, see Smith and

Agrawal (2000) for an application with the one-step substitution model, wherein each consumer

type does not contain more than two products. While the integer programming approach is appeal-

ing for models with very few products in each consumer type, this approach is not tractable for

large values n, as the number of variables, which is equal to n+
∑n

t=2
n!

(n−t)!(t−1), and the number of

constraints, equal to
∑n

t=2
n!

(n−t)!(2t−1), tend to grow substantially with n. For instance, if n= 10,

then we have 78,912,820 variables and 167,689,710 constraints! In general, even for values of n as

low as 4, we find that solving the integer programming problem takes much longer time than using

the enumeration method described above. In practice, solving for the best assortment is generally

done off-line by retailers, however prices and costs might change on a weekly basis and the number

of potential products is generally greater than 20, making these two methods practically useless.

Hence, we need an effective method to find an optimal solution or good performing heuristics.

The tradeoffs involved in the assortment decisions can be explained as follows. On one hand, by

stocking all n products the retailer is able to capture the maximum amount of demand and avoid

all substitution and lost sale penalty costs. However, fixed costs and the differences in product
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profitability may deter the retailer from pursuing such a strategy. On the other hand, the retailer

could offer only the most profitable product, in which case, she would save on fixed costs but she may

only capture part of the demand and incur substantial substitution and lost sale penalty costs as

not all consumers will purchase their most preferred product. In most cases the optimal assortment

is somewhere between these two extreme solutions, as illustrated in the following example.

Example 1. Let n= 4. Suppose π1 = 8, π2 = 7, π3 = 6.5, π4 = 3, T + = {(4), (3,4), (4,3,2), (2,1,3,4)}

and ατ = 1
4

for τ ∈ T +. Suppose p= 0, f(k) = (k− 1)b, where b∈ {0,0.75}, K ∈ {0,1}.

The following table 2 shows the (unique) optimal assortment for all combinations of (b,K).

S∗ K = 0 K = 1
b= 0 {1,3} {3}
b= 0.75 {1,3,4} {3}

Table 2 Optimal assortments in Example 1.

Not surprisingly, Example 1 shows that a greater substitution penalty leads to a larger optimal

assortment and a greater fixed cost leads to a smaller optimal assortment. It also demonstrates

that the optimal assortment does not necessarily, i) satisfy all customers (e.g., customers of type

(4) do not buy anything from S∗ when b = K = 0), ii) contain the most popular product (e.g.,

product 4 is not in S∗ when b=K = 0), and iii) contain the product with the highest profit margin

(e.g., product 1 is not included in S∗ when b = 0 and K = 1). Thus, Example 1 illustrates that

we cannot count on simple sorting rules based on popularity or profitability (as in van Ryzin and

Mahajan (1999) and Li (2007)) to obtain the optimal assortment. However, the following result

when b=K = 0 is worth noting.

Proposition 1. Let M = {j ∈ N : πj = maxi∈N πi}. If K = 0 and f(k) = 0, there exists an

optimal assortment S∗ including the most profitable products, i.e., M ⊆ S∗.

Proof Suppose that S is optimal but does not contain j ∈M . Let Pi(S) ≡
∑n

k=1P
k
i (S). When

K = 0 and f(k) = 0, we have

Π(S ∪{j})−Π(S) =
∑

i∈S∪{j}

Pi(S ∪{j})πi−
∑
i∈S

Pi(S)πi,

=

 ∑
i∈S∪{j}

Pi(S ∪{j})−
∑
i∈S

Pi(S)

πj +
∑
i∈S

[Pi(S)−Pi(S ∪{j})] (πj −πi)

This expression is non-negative because (1)
∑

i∈S∪{j}Pi(S ∪ {j}) ≥
∑

i∈S Pi(S) as a customer

who buys a product from S always buys a product from S ∪ {j} , (2) Pi(S)≥ Pi(S ∪ {j}) as the
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proportion of customers buying product i cannot increase after product j is added to the set and

(3) πj ≥ πi since j ∈M . Hence, Π(S ∪ {j}) ≥ Π(S). If the inequality is strict then S cannot be

optimal. If not, S ∪{j} is also an optimal solution. Q.E.D.

Proposition 1 shows that, when the fixed cost is negligible, the retailer’s optimal assortment

always contains the most profitable product(s). However, Example 1 shows that, even in that

case, the optimal assortment does not necessarily include a certain number of the most profitable

products (e.g. the optimal set S∗ = {1,3}when K = b= 0 and product 2 has a higher profit than

product 3). Further, the following example illustrates that it is also not possible to eliminate

dominated products; a product is dominated if there exists another product that is more profitable

and more preferred by all customers.

Example 2. Let n= 3. Suppose π1 = 20, π2 = 10, π3 = 8, T + = {(2,1,3), (2,3)} and ατ = 1
2

for

τ ∈ T +. Suppose p=K = 0 and f(k) = 0. The optimal assortment is S∗ = {1,3}.

In the above example, every customer prefers product 2 to product 3 and product 2 is more

profitable than product 3 since π2 > π3, implying that 3 is dominated by product 2. And yet,

product 3 is included in the optimal assortment. The intuition behind is as follows: product 3 is

offered alongside product 1 which is the most profitable product because it brings extra demand

without cannibalizing the sales of product 1 at all. In contrast, product 2 would cannibalize the

sales of product 1. Pan and Honhon (2012) prove a similar lack of dominance relationship for a

choice model with vertically differentiated products when prices are exogenous.

In addition to lack of dominance, popularity or profitability based results, it is well-known that

greedy-type heuristics also fail to find the optimal assortment for all problem instances, which

illustrates the fact that the products interact in a complex manner in the RBM. We focus on four

such heuristics in Section 4.

4. Heuristics

In this section, we present the following four heuristic approaches to the assortment planning

problem: the ‘Most Profitable’, ‘Greedy-Add’, ‘Greedy-Remove’ and ‘Largest Marginal Benefit’

heuristics. The first three have been studied before in the context of a product selection problem

without substitution costs (see for example Green and Krieger (1985) and Dobson and Kalish

(1993)). The fourth one has, to our knowledge, not been used for this problem.

The Most Profitable (MP) heuristic adds products to the assortment in increasing order of

profitability as measured by πj. Note that Li (2007) and Liu and van Ryzin (2008) show that

this algorithm is optimal when customer preferences are modeled by the Multinomial Logit model,

which is a special case of the RBM.



10 Author: Article Short Title

Algorithm 1 Most profitable (MP) heuristic
Renumber products in the decreasing order of πj such that π1 ≥ π2 ≥ ...≥ πn.

Set S0 = ∅ and Sk = {1, ..., k} for k= 1, ..., n.

Find SMP = arg maxSk:k∈{0,1,...,n}Π(Sk).

Lemma 1 shows that the MP heuristic can perform extremely bad in some cases.

Lemma 1. Let S∗ be the optimal assortment and SMP be the assortment obtained using the MP

heuristic. We have Π(SMP )

Π(S∗) ≥ 0, i.e., the achievable worst case bound is 0.

Proof Consider the following example. Let n= 2, π1 = 10, π2 = 8, and ατ = 1
2

if τ ∈ {(1,2), (2)}.

Suppose p= f(k) = 0 and K = 6. We have S∗ = {2} and Π(S∗) = 2 but SMP = ∅ and Π(SMP ) = 0.

Q.E.D.

In the Greedy-Add (GA) heuristic (also called just ‘greedy’), products are added to the assort-

ment in increasing order of their contribution to profit. Note that this heuristic differs from the

traditional greedy algorithm because the contribution to profit of a product depends on the set of

products already in the assortment, i.e. Π(S ∪ {j})−Π(S) is a function of S. Example 3 shows

that the profit of the solutions obtained by the GA heuristic is not necessarily unimodal, which is

why the heuristic always scans a total of n (non-empty) assortments.

Algorithm 2 Greedy-Add (GA) heuristic
Set: S0 = ∅, T =N , k= 1.

while T 6= ∅ do

Find j = arg maxi∈T{Π(Sk−1 ∪{i})}.

Set T := T\{j}, Sk := Sk−1 ∪{j}, k := k+ 1.

end while

SGA = arg maxSk:k∈{0,1,...,n}Π(Sk) .

Example 3. Suppose n= 3, π1 = 6, π2 = 20 and π3 = 17. T + = {(1), (2,1,3), (3,1,2)} and ατ = 1
3

for τ ∈ T +. Suppose p = K = f(k) = 0, k = 1, ..., n. The GA algorithm constructs the following

three sets: S0 = ∅, S1 = {2}, S2 = {2,3} and S3 = {1,2,3}. The profit of the sets is equal to 0, 13.33,

12.33 and 14.33 respectively for S0, S1, S2 and S3 so that SGA = {1,2,3}.

In Lemma 2 we obtain a worst case bound for the GA heuristic.

Lemma 2. Let S∗ be the optimal assortment and SGA be the assortment obtained using the GA

heuristic. We have Π(SGA)

Π(S∗) ≥
1

n−1
, i.e., the achievable worst case bound is 1

n−1
.
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Proof Let S∗1 denote the assortment with the highest profit out of all the sets with cardinality 1.

After one iteration, the greedy algorithm picks assortment S∗1 , therefore Π(SGA)≥Π(S∗1).

Claim: Π(S∗)≤ (n− 1)Π(S∗1).

Let S∗ = {s1, ..., sm} with s1 < ... < sm and 1≤m≤ n. Note that if m= n, then SGA = S∗ since

the GA algorithm considers the set {1, ..., n} in the last iteration. So we consider m≤ n− 1. We

have

Π(S∗) =
m∑
j=1

n∑
k=1

P k
sj

(S∗)[πsj + p− f(k)]− p−mK =
m∑
j=1

Πsj (S
∗)− p,

where Πsj (S
∗) ≡

∑n

k=1P
k
sj

(S∗)[πsj + p − f(k)] − K is the contribution of product sj to the

profit of assortment S∗. It follows that Π(S∗) ≤ mΠs
ĵ
(S∗) where ĵ is such that Πs

ĵ
(S∗) =

maxj=1,...,mΠsj (S
∗). Because adding products to an assortment can only decrease the proportion of

customers choosing a given product as their k-choice, P k
s
ĵ
(S∗)≤ P k

s
ĵ
({sĵ}) for k= 1, ..., n. Therefore,

Πs
ĵ
(S∗)≤Πs

ĵ
({sĵ}) and Π(S∗)≤mΠs

ĵ
({sĵ}) =mΠ({sĵ})≤mΠ(S∗1), where the last inequality is

by definition of S∗1 . Since m≤ n− 1, we have Π(SGA)

Π(S∗) ≥
Π(S∗1 )

Π(S∗) ≥
1
m
≥ 1

n−1
.

Next we show that the bound is achievable with the following example. Suppose π1 = π
n−1

+ε and

π2 = ...= πn = π, where π, ε > 0. Let ατ = 1
n−1

if τ ∈ {(1,2), (1,3), ..., (1, n)}. Let p=K = f(k) = 0.

The GA heuristic gives SGA = {1} and reaches a profit of Π(SGA) = π
n−1

+ ε. However the optimal

solution is S∗ = {2, ..., n} and the optimal profit is Π(S∗) = π. Therefore we have Π(SGA)

Π(S∗) =
π
n−1 +ε

π
.

If we let ε→ 0, we obtain 1
n−1

. Q.E.D.

Note that a similar worst-case bound is obtained by Green and Krieger (1985) for a simplified

version of the profit function. This bound 1
n−1

decreases with n indicating that the GA heuristic

can perform very badly when n is large.

The Greedy-Remove (GR) heuristic (also called ‘reverse greedy’) is similar to the GA heuristic

except that one starts with a full assortment then removes products in increasing order of their

impact on profit.

Lemma 3 shows that the GR heuristic can also perform extremely bad.

Lemma 3. Let S∗ be the optimal assortment and SGR be the assortment obtained using the GR

heuristic. We have Π(SGR)

Π(S∗) ≥ 0, i.e., the achievable worst case bound is 0.

Proof Consider the following example. Let n = 3, π1 = π2 = 10, π3 = 8 and ατ = 1
2

if τ ∈

{(3,1), (3,2)}. Suppose p= f(k) = 0 and K = 6. We have S∗ = {3} and Π(S∗) = 2 but SGR = ∅ and

Π(SGR) = 0. Q.E.D.

The Largest Marginal Benefit (MB) heuristic is inspired by the ‘largest marginal revenue’ Algo-

rithm of Talluri and Ryzin (2004) which was developed in the context of revenue management.
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Algorithm 3 Greedy-Remove (GR) heuristic
Set: T = ∅, S0 =N , k= 1.

while T 6=N do

Find j = arg maxi∈Sk−1
{Π(Sk−1\{i})}.

Set T := T ∪{j}, Sk := Sk−1\{j}, k := k+ 1.

end while

SGR = arg maxSk:k∈{0,1,...,n}Π(Sk).

This is, to our knowledge the first application of this method to a product selection problem. The

MB heuristic is similar to the GA heuristic except that products are added in increasing order of

their marginal benefit when added to set Sk, i.e., the change in profit per extra unit of demand,

Bj(Sk) = Π(Sk∪{j})−Π(Sk)

P0(Sk)−P0(Sk∪{j})
.

Algorithm 4 Largest Marginal Benefit (MB) heuristic
Set: S0 = ∅, T =N , k= 1.

while T 6= ∅ do

Find j = arg maxi∈T{Bi(Sk−1)}.

Set T := T\{j}, Sk := Sk−1 ∪{j}, k := k+ 1.

end while

SMB = arg maxSk:k∈{0,1,...,n}Π(Sk) .

The MP heuristic has a complexity of O(|T +|n2 logn) while the GA, GR and MB heuristics have

a complexity of O(|T +|n3) since computing the purchasing proportions for a given assortment S

can be done in O(|T +|n) time as shown in Honhon et al. (2012b). The following example shows that

these four heuristics can simultaneously fail to find the optimal assortment for a given problem.

Example 4. Let n= 5. Let π1 = 8, π2 = 6, π3 = 5, π4 = 9 and π5 = 7. Let b= 0 and K = 1. Let

T + = {(2), (3), (2,1), (2,3), (3,1), (3,2), (3,4), (5,1), (5,3)}. The ατ values are given in Table 3:

τ (2) (3) (2,1) (2,3) (3,1) (3,2) (3,4) (5,1) (5,3)
ατ 1/6 2/21 1/12 1/12 1/21 2/21 2/21 1/6 1/6

Table 3 Proportions of customers of each type in Example 4.

Table 4 shows the solutions given by the four heuristics. The optimal assortment (obtained by

enumeration) is S∗ = {2,3,5} and Π(S∗) = 3, so all of the four heuristics give a suboptimal solution.
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Assortment Profit
MP {1,2,4,5} 2.14
GA {1,3} 2.92
GR {2,5} 2.90
MB {1,3} 2.92

Table 4 Solutions from the four heuristics in Example 3.

Given these worst-case bounds, we see that the heuristics can perform quite badly. However, it

is of more practical relevance to study how they perform on more realistic examples as a function

of the problem size and the fixed cost and substitution costs. We do so in Section 6.

5. The In-Out Algorithm

The In-Out Algorithm is an algorithm which always provides an optimal assortment. It is divided

into two parts. Part I is a first sorting of the products in order to identify, in an iterative manner,

the products which should definitely be included in the optimal assortment and the products which

should definitely not be included in the optimal assortment. In most cases Part I ends with three

groups of products: those included definitely, those not included definitely, and those for which

the initial sorting in Part I was inconclusive. In Part II the algorithm focuses on this last group

of products and constructs a number of candidate assortments, one of which is guaranteed to be

optimal. Part I can be completed in O(|T +|n3) and does, in some cases, yield an optimal assortment

directly. Part II has the same complexity as the enumeration method, however it is much faster in

practice as the number of candidate assortments to compare is generally much smaller than 2n.

The idea behind the initial sorting conducted in Part I is as follows. A product should definitely

be in the optimal assortment if it increases profit when added to every possible assortment. A

product should definitely not be included in the optimal assortment if it decreases profit when

added to every possible assortment. Let Cj(S) = Π(S ∪ {j})−Π(S) be the change in profit that

results from adding product j to set S. Product j should be included in the optimal assortment

if minS⊆N Cj(S)≥ 0. Let I be the set of product which satisfy this condition. On the other hand,

product j should not be included in the optimal assortment if maxS⊆N Cj(S)≤ 0. Let O be the set

of products which satisfy this condition. After some products are added to sets I and O, one can

revisit the remaining products in N\(I ∪O): if minS:I⊆S⊆(N\O)Cj(S)≥ 0 then product j should be

added to set I and if maxS:I⊆S⊆(N\O)Cj(S)≤ 0, product j should be added to set O. Hence sets I

and O can be calculated iteratively.

The problem with this method is that the calculation of minS:I⊆S⊆(N\O)Cj(S) and

maxS:I⊆S⊆(N\O)Cj(S) has the same complexity as the enumeration method, i.e., O(|T +|n2n).



14 Author: Article Short Title

Therefore we calculate respectively a lower and an upper bound on these two values which can

be calculated in O(|T +|n) for given I and O sets. For this, we define g1(τ , S) to be a function

that returns the product chosen by a customer of type τ from set S and let g2(τ , S) be a function

that returns which choice the customer purchases this product as. For example, if τ = (3,1) and

S = {1,2}, we have g1(τ , S) = 1 and g2(τ , S) = 2 because a customer of type (3,1) picks product

1 from set {1,2} and it is his second choice. The two functions return zero if consumers of type τ

do not pick any product from set S. Using these functions we rewrite the profit function (2) as:

Π(S) =
∑

τ∈T +

ατ [πg1(τ ,S) + p− f(g2(τ , S))]− p−K|S|

and

min
S:I⊆S⊆(N\O)

Cj(S) = min
S:I⊆S⊆(N\O)

∑
τ∈T +

ατ

{
[πg1(τ ,S∪{j})− f(g2(τ , S ∪{j}))]− [πg1(τ ,S)− f(g2(τ , S))]

}
−K

≥
∑

τ∈T +

ατ min
Sτ :I⊆Sτ⊆(N\O)

{
[πg1(τ ,Sτ∪{j})− f(g2(τ , Sτ ∪{j}))]− [πg1(τ ,Sτ )− f(g2(τ , Sτ ))]

}
−K

=
∑

τ∈T +

ατδ
−(τ , j, I,O)−K (7)

max
S:I⊆S⊆(N\O)

Cj(S) = max
S:I⊆S⊆(N\O)

∑
τ∈T +

ατ

{
[πg1(τ ,S∪{j})− f(g2(τ , S ∪{j}))]− [πg1(τ ,S)− f(g2(τ , S))]

}
−K

≤
∑

τ∈T +

ατ max
Sτ :I⊆Sτ⊆(N\O)

{
[πg1(τ ,Sτ∪{j})− f(g2(τ , Sτ ∪{j}))]− [πg1(τ ,Sτ )− f(g2(τ , Sτ ))]

}
−K

=
∑

τ∈T +

ατδ
+(τ , j, I,O)−K (8)

where

δ−(τ , j, I,O) = min
Sτ :I⊆Sτ⊆N\O

[πg1(τ ,Sτ∪{j})− f(g2(τ , Sτ ∪{j}))]− [πg1(τ ,Sτ )− f(g2(τ , Sτ ))]

δ+(τ , j, I,O) = max
Sτ :I⊆Sτ⊆N\O

[πg1(τ ,Sτ∪{j})− f(g2(τ , Sτ ∪{j}))]− [πg1(τ ,Sτ )− f(g2(τ , Sτ ))]

For τ ∈ T +, δ−(τ , j, I,O) (δ+(τ , j, I,O)) is the minimum (maximum) difference in profit, net of

substitution cost, earned by the firm on consumers of type τ when product j is added to a set

which contains all the products in I and none of the products in O. Algorithm 5 shows how to

compute these values. Note that we use a slight abuse of notation when we write j ∈ τ since τ is

a vector. Calculating δ+(τ , j, I,O) and δ−(τ , j, I,O) using Algorithm 5 for a given τ ∈ T + can be

done in O(n). Example 5 illustrates the calculation of the δ−(τ , j, I,O) and δ+(τ , j, I,O) values.

Example 5. Let n = 4 and π1 = 10, π2 = 8, π3 = 5, π4 = 7. Let f(k) = 0 for k = 1, ..., n. Con-

sider type τ = (3,1,2,4) and j = 1, so that x = 2. Table 5 shows the values of δ+(τ , j, I,O) and

δ−(τ , j, I,O) as a function of I and O. �
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Algorithm 5 Calculating δ+(τ , j, I,O) and δ−(τ , j, I,O) for a given type τ = (τ1, ..., τt)∈ T +.
if j ∈ τ then

Let x be such that τx = j.

Let y be the lowest index such that τy ∈N\(I ∪O).

Let z be the lowest index such that τz ∈ I. If τ1, ..., τt /∈ I, let z = t+ 1.

if Case 0: z < x then

δ+(τ , j, I,O) = δ−(τ , j, I,O) = 0

end if

if Case 1: y= x and x< z < t+ 1 then

δ+(τ , j, I,O) = πj − f(x)−min{πτk − f(k) : τk /∈O and x+ 1≤ k≤ z}

δ−(τ , j, I,O) = πj − f(x)−max{πτk − f(k) : τk /∈O and x+ 1≤ k≤ z}

end if

if Case 2: y= x and z = t+ 1 then

δ+(τ , j, I,O) = πj − f(x)−min
{

0,min{πτk − f(k) : τk /∈O and x+ 1≤ k≤ t}
}

δ−(τ , j, I,O) = πj − f(x)−max
{

0,max{πτk − f(k) : τk /∈O and x+ 1≤ k≤ t}
}

end if

if Case 3: y < x and x< z < t+ 1 then

δ+(τ , j, I,O) = max
{

0, πj − f(x)−min{πτk − f(k) : τk /∈O and x+ 1≤ k≤ z}
}

δ−(τ , j, I,O) = min
{

0, πj − f(x)−max{πτk − f(k) : τk /∈O and x+ 1≤ k≤ z}
}

end if

if Case 4: y < x and z = t+ 1 then

δ+(τ , j, I,O) = max
{

0, πj − f(x)−min
{

0,min{πτk − f(k) : τk /∈O and x+ 1≤ k≤ t}
}}

δ−(τ , j, I,O) = min
{

0, πj − f(x)−max
{

0,max{πτk − f(k) : τk /∈O and x+ 1≤ k≤ t}
}}

end if

else (j /∈ τ )

δ+(τ , j, I,O) = δ−(τ , j, I,O) = 0

end if

I O y z Case δ+ δ−

{3} ∅ 2 1 0 0 0
{4} {3} 2 4 1 3 2
∅ {3} 2 5 2 10 2
{4} ∅ 1 4 3 3 0
∅ ∅ 1 5 4 10 0

Table 5 δ+(τ , j, I,O) and δ−(τ , j, I,O) in Example 5.
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Let ∆−(j, I,O) =
∑

τ∈T + ατδ
−(τ , j, I,O) and ∆+(j, I,O) =

∑
τ∈T + ατδ

+(τ , j, I,O). From (7),

∆−(j, I,O) −K is a lower bound on minS:I⊆S⊆(N\O)Cj(S) and from (8), ∆+(j, I,O) −K is an

upper bound on maxS:I⊆S⊆(N\O)Cj(S). Calculating these two values can be done in O(|T +|n). We

formalize the In-Out Algorithm (Part I) below. Note that, when K = 0, and f(k) = 0 for k= 1, ..., n,

the Algorithm can be sped up by initializing I = M where M is defined in Proposition 1. The

complexity of Part I of the In-Out Algorithm is O(|T +|n3).

Algorithm 6 In-Out Algorithm (Part I)
Set I =O= ∅, Change:=1.

while Change =1 do

Change:=0,

for all j ∈N\(I ∪O) do

if ∆−(j, I,O)≥K then

I := I ∪{j}, Change:=1.

else

if ∆+(j, I,O)≤K then

O :=O∪{j}, Change:=1.

end if

end if

end for

end while

Proposition 2. Let I,O be the sets given by Part I of the In-Out Algorithm. There exists

an optimal assortment S∗, such that I ⊆ S∗ ⊆ (N\O). Moreover, if, at the end of the algorithm,

I ∪O=N , then I is optimal.

Proof We prove the result by induction. In the first iteration of the algorithm (when I =O= ∅) the

products that are added to set I are such that ∆−(j,∅,∅)≥K, which implies that minS:S⊆N Cj(S)≥

0 and thus Π(S ∪{j})≥Π(S) for all S ⊆N . Similarly all the products that are included in set O

are such that ∆+(j,∅,∅)≤K which implies that maxS:S⊆N Cj(S)≤ 0 and thus Π(S ∪{j})≤Π(S)

for all S ⊆N . Therefore, there must exist an optimal assortment S such that I ⊆ S ⊆ (N\O) where

I and O are obtained at the end of the first iteration.

Now assume that this is true for the k-th iteration and let I and O be the sets which are

obtained at the end of the k-th iteration. The products added to I during the (k+ 1)-th iteration
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are such that ∆−(j, I,O) ≥ K which implies that minS:I⊆S⊆(N\O)Cj(S) ≥ 0, which means that

Π(S ∪ {j})≥ Π(S) for all I ⊆ S ⊆ (N\O) and we can restrict our attention to these assortments

by the induction hypothesis. Similarly, the products added to O during the (k + 1)-th iteration

are such that ∆+(j, I,O) ≤ K which implies that maxS:I⊆S⊆(N\O)Cj(S) ≤ 0, which means that

Π(S ∪ {j})≤ Π(S) for all I ⊆ S ⊆ (N\O) and we can restrict our attention to these assortments

by the induction hypothesis. Hence, there must exist an optimal assortment S such that I ⊆ S ⊆

(N\O) where I and O are obtained at the end of the (k+ 1)-th iteration. Q.E.D.

The following example illustrates how Part I of the In-Out Algorithm works.

Example 6. Let n= 4. Let π1 = 8, π2 = 7, π3 = 5 and π4 = 18.

Let ατ = 1
6

for τ ∈ {(1), (2), (3), (2,3), (3,4), (1,2,4)} and 0 otherwise. Let K = 0 and f(k) = 0 for

k = 1, ..., n. The In-Out Algorithm finds an optimal assortment after 4 iterations. Table 6 shows

the value of the I,O sets as well as the ∆−(j, I,O) and ∆+(j, I,O). in each iteration.

Iteration I O 1 2 3 4
1 ∅ ∅ ∆−(j, I,O) -0.33 -0.33 -1.33 0

∆+(j, I,O) 2.67 3.50 2.50 6.00
2 {4} ∅ ∆−(j, I,O) -0.33 -0.33 -1.33 /

∆+(j, I,O) 1.50 3.50 -0.50 /
3 {4} {3} ∆−(j, I,O) -0.33 0.50 / /

∆+(j, I,O) 1.50 3.50 / /
4 {2,4} {3} ∆−(j, I,O) 1.50 / / /

∆+(j, I,O) 1.50 / / /
end {1,2,4} {3}

Table 6 Iterations of Part I of the In-Out Algorithm in Example 6.

During the first iteration, product 4 is added to set I because ∆−(4,∅,∅) = 0. During the second

iteration, product 3 is added to set O because ∆+(3,{4},∅) =−0.50< 0. During the third iteration,

product 2 is added to set I because ∆−(2,{4},{3}) = 0.50> 0. During the fourth iteration, product

1 is added to set I because ∆−(1,{2,4},{3}) = 1.50> 0. After the fourth iteration, all 4 products

have been allocated to the sets I and O, i.e., I ∪O=N so the optimal solution is I = {1,2,4}. �

In cases where I ∪ O 6= N , an optimal assortment can be found by enumerating all sets T ⊆

N\(I ∪O) and looking for the one that gives the highest value of Π(I ∪ T ). We propose part II

of the In-Out Algorithm in order to speed up this process. Let m= n− |I| − |O|. Before starting

the algorithm we renumber the products such that products 1 to m belong to set N\(I ∪O) and

π1 ≥ π2 ≥ ... ≥ πm. Part II starts with I and O from Part I as inputs and goes as follows. If a

product does not meet the ∆−(j,Si, Ti)≥K nor ∆+(j,Si, Ti)≤K conditions, it is not clear if this
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product should be added to a set that contains all the products in Si and none of the products in

Ti. Therefore, we consider both cases: when j is added and when it is not. Using this idea, Part II

of the In-Out Algorithm constructs Nm candidate assortments. The optimal assortment is the one

with the highest profit amongst these. Example 7 illustrates how Part II of the In-Out Algorithm

works.

Algorithm 7 In-Out Algorithm (Part II): given I and O as given in Part I
N0 = 1, S1 = I, T1 =O.

for j = 1, ...,m do

Nj =Nj−1

for i= 1, ...,Nj−1 do

if ∆−(j,Si, Ti)≥K then

Si := Si ∪{j}

else

if ∆+(j,Si, Ti)≤K then

Ti := Ti ∪{j}.

else

Nj =Nj + 1, SNj = Si ∪{j}, TNj = Ti, Ti = Ti ∪{j}

end if

end if

end for

end for

Calculate Π(Si) for i= 1, ...,Nm. Let S∗ = arg maxi=1,...,Nm Π(Si).

Example 7. Let n = 5. Let π1 = 8, π2 = 5, π3 = 3, π4 = 14 and π5 = 5. Let ατ = 1
5

for τ ∈

{(1,3,2), (1,3,4,5), (2,4,3,1,5), (3,2), (5,4,2,1,3)} and 0 otherwise. Let K = 0 and f(k) = 0 for k=

1, ..., n. Part I of the In-Out Algorithm yields I = {4} and O= {5} so that N\(I∪O) = {1,2,3} and

m= 3. We start the part II of the In-Out Algorithm with S1 = {4} and T1 = {5}. First we examine

product 1: we have ∆−(1,{4},{5}) =−0.6< 0 and ∆+(1,{4},{5}) = 2.6> 0, so we set T1 = {1,5}

and create a second candidate assortment: S2 = {1,4}, T2 = {5}. Next we examine product 2 and see

if it should be added to the two candidate assortments. With respect to the first candidate assort-

ment, we have ∆−(2,{4},{1,5}) = −1.8 < 0 and ∆+(2,{4},{1,5}) = 0.2 so we set T1 = {1,2,5}

and create a third candidate assortment: S3 = {2,4} and T3 = {1,5}. With respect to the second
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candidate assortment, we have ∆−(2,{1,4},{5}) = −1.8 < 0 and ∆+(2,{1,4},{5}) = −0.8 < 0 so

we set T2 = {2,5}. Finally we examine product 3 and see if it should be added to the three can-

didate assortments. With respect to the first candidate assortment, we have ∆−(3,{4},{1,2,5}) =

∆+(3,{4},{1,2,5}) =−1< 0 so we set T1 = {1,2,3,5}. With respect to the second candidate assort-

ment, we have ∆−(3,{1,4},{2,5}) = ∆+(3,{1,4},{2,5}) = 0.6 > 0 so we set S2 = {1,3,4}. With

respect to the third candidate assortment, we have ∆−(3,{2,4},{1,5}) = ∆+(3,{2,4},{1,5}) =

−3< 0 so we set T3 = {1,3,5}. At the end we have three candidate assortments: S1 = {4}, S2 =

{1,3,4} and S3 = {2,4} which yield a profit equal to 8.4, 9.4 and 8.6 respectively. Hence the optimal

assortment is S2 = {1,3,4}. Table 7 illustrates the construction of the candidate assortments.

Iteration j Nj S1 T1 S2 T2 S3 T3

0 1 {4} {5}
1 2 {4} {1,5} {1,4} {5}
2 3 {4} {1,2,5} {1,4} {2,5} {2,4} {1,5}
3 3 {4} {1,2,3,5} {1,3,4} {2,5} {2,4} {1,3,5}

Table 7 Iterations of Part II of the In-Out Algorithm in Example 7

The complexity of Part II of the In-Out Algorithm is the same as that of the enumeration, i.e.,

O(|T +|n2n) method because, in theory, the number of candidate assortments can be as large as

2n. However this is very unlikely to happen in practice. Table 11 in our numerical study shows

that the Algorithm is in practice very fast, e.g., on average more than 10,000 times faster than

enumeration when n= 20.

6. Numerical Study

The objective of this numerical study is twofold. First, we test the performance of the four heuristics

presented in Section 4 by computing their optimality gap and study how it varies with the size of

the problem, the fixed and substitution costs. Second, we show how the fixed and substitution costs

affect the number of products in set I and O generated by Part I of the In-Out Algorithm, and com-

pare the computation time of all of the solutions methods, i.e., the four heuristics, the enumeration

method, and the In-Out Algorithm. Based on this two-part analysis we provide recommendations

on the conditions under which the methods are appropriate.

In our numerical experiments we find that the performance of the four heuristics is mostly a

function of the number of products n, the fixed cost K, and the substitution penalty function f ;

the other parameters, namely, the number of types in T +, the profit margins π1, ..., πn, and the lost

sale penalty cost p do not appear to have a direct impact. We show a summary of our numerical
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results in Tables 8 to 11. Each number in the tables is the average over 1000 problem instances. In

each problem instance, the types in T + are generated randomly and made equally likely, that is,

we set ατ = 1
|T +| for τ ∈ T +. The profit margins are obtained using a discrete uniform distribution

between 1 and 20. Finally we set p= 0.

In Table 8, we compare the performance of the heuristics with respect to the number of products.

We use n∈ {5,10,15,20,25}, and set the number of types in T + also equal to n. We use K = b= 0.

For a given scenario we report the percentage of instances in which each heuristic gives the optimal

solution (% opt), the average optimality gap (avg OG), and the maximum optimality gap (max

OG), where the optimality gap is computed as OG= Π(S∗)−Π(S)

Π(S∗) , where S∗ is the optimal assortment

and S is the assortment obtained by the heuristic.

heuristic n % opt avg OG (%) max OG (%)
5 76 1.36 13.64
10 56 1.48 13.01

MP 15 32 2.15 11.93
20 29 1.95 8.43
25 19 2.02 7.30
5 98 0.35 10.61
10 93 0.13 4.35

GA 15 78 0.55 10.22
20 82 0.27 4.03
25 75 0.25 4.27
5 98 0.59 31.58
10 76 1.13 12.50

GR 15 76 0.64 19.55
20 66 0.75 9.97
25 56 0.80 6.18
5 98 0.03 1.59
10 91 0.11 2.70

MB 15 88 0.14 3.64
20 87 0.12 1.67
25 76 0.17 1.98

Table 8 Performance of the four heuristics with respect to n.

We see in Table 8 that the performance of all four heuristics deteriorates as n increases, this

is especially true when it comes to the percentage of problem instances for which they obtain

the optimal solution. Overall the MB heuristic performs the best followed by the GA and GR

heuristics.

In Table 9 we compare the performance of the four heuristics with respect to the fixed cost and

substitution penalty. We set n = |T +| = 15 and vary the fixed cost K ∈ {0,2,4}. Regarding the

substitution penalty, we assume f(k) = b(k− 1) and vary b∈ {0,1,2}.
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% opt Avg OG (%) Max OG (%)
Heuristic b=0 b=1 b=2 b=0 b=1 b=2 b=0 b=1 b=2

K=0 32 40 44 2.15 2.13 1.54 11.93 7.08 4.95
MP K=2 33 42 28 8.47 8.98 7.96 37.93 40.88 100.00

K=4 43 39 47 12.08 14.49 20.63 100.00 100.00 100.00
K=0 78 87 98 0.55 0.17 0.18 10.22 2.97 2.33

GA K=2 88 92 90 0.60 0.55 0.24 11.67 10.13 24.47
K=4 95 96 98 0.38 0.21 0.27 14.29 12.16 7.69
K=0 76 81 84 0.64 0.60 0.48 19.55 8.47 5.85

GR K=2 89 84 85 0.63 1.84 0.69 12.50 11.46 16.67
K=4 82 80 90 1.85 2.27 3.61 23.08 52.50 100.00
K=0 88 91 87 0.14 0.05 0.09 3.64 2.11 4.83

MB K=2 75 75 80 1.12 1.25 1.01 37.93 12.82 31.67
K=4 76 83 95 2.08 1.79 2.04 25.00 29.41 24.14

Table 9 Performance of the four heuristics with respect to K and b.

The results show that even though four heuristics seem to be reaching the optimal solution with

a higher frequency as b and K increase, the average optimality gap actually increases, indicating

that the performance of all four heuristics actually gets worse as b and K increase. Also we see that

the impact is more significant for K than for b. We also see that when K = 0, the MB heuristic

performs the best but it is the GA heuristic that does better when K becomes larger. The MP

heuristic always performs the worst.

The size of the I and O sets generated in Part I has a significant impact on the overall com-

putational time of the In-Out Algorithm. Next we study the impact of the model parameters on

the number of products included in the I and O sets at the end of part I. Equations (7) and

(8) and Algorithm 5 show that the penalty cost p does not have an impact on δ−(τ , j, I,O) and

δ+(τ , j, I,O), and thus has no effect on the size of the I and O sets generated in part I. The fixed

cost K and substitution cost f(k) have an impact but it is non-monotone. We set n= |T +|= 10

and vary the fixed cost K ∈ {0,2,4}. Regarding the substitution cost, we assume f(k) = b(k− 1)

and vary b ∈ {0,1,2}. In Table 10, we examine how the average number of products in sets I and

O changes with the value of b and K. We see that the average number of products included in the

set I and O may decrease or increase with K and b.

Next, we compare the computation time of the different solution methods. Our numerical exper-

iments indicate that only two parameters affect the computation time of the different methods:

the number of products n and the number of types in T +, the other parameters (i.e., π1, ..., πn,

ατ for τ ∈ T +, K, b and p) do not have a noticeable impact on it. In Table 11, we report the

results of varying the number of products n in {5,10, ...,25,30} and the number of types in T +

in {n,n+ 5..., n+ 20}. In each problem instance, the types in T + were generated randomly and
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b
|I|&|O| in Part I 0 1 2

K = 0 |I| 1.56 4.92 5.36
|O| 0.87 4.53 6.29

K = 2 |I| 0.01 0.41 0.09
|O| 2.21 7.3 1.44

K = 4 |I| 0.01 0.03 0.09
|O| 7.44 8.81 9.3

Table 10 Average number of products in sets I and O with respect to K and b.

made equally likely, that is, we set ατ = 1
|T +| for τ ∈ T +. Also the profit margin of each product

were obtained using a discrete uniform distribution between 1 and 20. Finally we set f(k) = 0 for

k= 1, ..., n and K = p= 0. All averages were calculated over 1000 problem instances (except when

the computation time is over 4 hours, in which case we used 10 problem instances). In all cases we

used Matlab 7.6 on a Lenovo Laptop with a Intel Core 2 Duo Processor P8600 with 2.4GHz and

4GB of RAM. We report the average computation times of the four heuristics (MP, GA, GR and

MB), the enumeration method (Enum), Parts I and II of the In-Out Algorithm separately (IO-I

and IO-II) and together (IO-I&II). We also report the average number of products put into sets

I and O at the end of part I of the In-Out Algorithm (|I|+ |O| part I), the average number of

candidate assortments generated by Part II of the In-Out Algorithm, i.e., Nm (# assortments IO),

and the number of assortments considered by the enumeration method, which is equal to 2n (#

assortments Enum.).

We see that the enumeration quickly becomes impractical; it takes over 24 hours for problems

with 20 products. The In-Out Algorithm (parts I and II) produces an optimal solution in less than

4 minutes for up to 25 products and around 5 hours for n= 30. Also its computation time does not

vary significantly with the number of types for a fixed value of n. Part I of the In-Out Algorithm

is very fast but its efficiency (measured by the number of products which get assigned to set I or

O) decreases with n and |T +|. The four heuristics can handle a very high number of products and

types, their computation time is still under 10 seconds for n=100.

Based on this numerical analysis, we recommend using the In-Out Algorithm for product cat-

egories with up to 25 or 30 products, depending on how much time is available. For product

categories with more than 30 products, we recommend first using Part I of the In-Out Algorithm

in order to do a first sorting of the products, followed by the MB heuristic when K is very low,

and the GA heuristic otherwise. However one should keep in mind that the heuristics can lead to

substantial optimality gaps.



Author: Article Short Title 23

Computation time |I|+ |0| # assortments
n nt MP GA GR MB Enum. part I part II parts I+II part I IO Enum.
5 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.76 1.23 32
5 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.49 1.61 32
5 15 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 3.58 1.6 32
5 20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 3.5 1.54 32
5 25 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 3.44 1.74 32
10 10 0.00 0.01 0.01 0.01 0.14 0.00 0.01 0.01 5.1 11.05 1024
10 15 0.00 0.01 0.01 0.01 0.16 0.00 0.02 0.02 3.85 19.76 1024
10 20 0.00 0.01 0.01 0.02 0.19 0.00 0.02 0.03 3.75 20.78 1024
10 25 0.00 0.01 0.01 0.02 0.21 0.01 0.03 0.03 3.22 22.29 1024
10 30 0.00 0.01 0.01 0.02 0.23 0.01 0.03 0.04 3.32 22.41 1024
15 15 0.00 0.02 0.02 0.03 67.87 0.01 0.16 0.17 3.72 166.61 32768
15 20 0.00 0.02 0.02 0.04 69.91 0.01 0.22 0.23 3.29 183.41 32768
15 25 0.00 0.02 0.02 0.04 72.00 0.01 0.28 0.28 3.55 207.48 32768
15 30 0.00 0.03 0.03 0.05 72.90 0.01 0.48 0.49 3.42 299.55 32768
15 35 0.00 0.03 0.03 0.05 73.46 0.01 0.37 0.39 3.51 204.47 32768
20 20 0.00 0.04 0.04 0.06 88182.00 0.01 3.54 3.55 3.66 1755.45 1048576
20 25 0.00 0.04 0.04 0.07 87716.00 0.02 2.79 2.80 3.46 1509.03 1048576
20 30 0.00 0.05 0.05 0.08 88019.00 0.02 3.73 3.75 3.54 1684.37 1048576
20 35 0.01 0.05 0.05 0.09 88689.00 0.02 4.83 4.85 2.92 2024.51 1048576
20 40 0.01 0.06 0.06 0.10 89102.00 0.02 8.02 8.05 2.89 2703.03 1048576
25 25 0.01 0.07 0.07 0.12 >100 days† 0.02 202.71 202.72 2.9 17733.33 33,554,432
25 30 0.01 0.08 0.08 0.14 >100 days† 0.02 130.99 131.02 2.89 16134.26 33,554,432
25 35 0.01 0.09 0.09 0.16 >100 days† 0.02 408.38 408.40 2.56 30608.24 33,554,432
25 40 0.01 0.09 0.10 0.17 >100 days† 0.03 442.51 442.53 2.54 31258.02 33,554,432
25 45 0.01 0.10 0.11 0.18 >100 days† 0.03 299.47 299.50 2.95 24123.1 33,554,432
30 30 0.01 0.12 0.13 0.21 >100 years† 0.02 20635.21 20635.23 4.12 209599.6 1,073,741,824
30 35 0.01 0.14 0.14 0.23 >100 years† 0.03 12469.02 12469.04 4.42 163970 1,073,741,824
30 40 0.01 0.15 0.15 0.26 >100 years† 0.03 24439.88 24439.91 2.82 241728 1,073,741,824
30 45 0.01 0.15 0.16 0.27 >100 years† 0.04 38967.73 38967.77 2.74 265722 1,073,741,824
30 50 0.01 0.17 0.17 0.29 >100 years† 0.04 49663.09 49663.13 2.03 302048 1,073,741,824
†obtained by extrapolation.

Table 11 Average computation time (in seconds) of all solution methods, average number of products put in sets

I and O in part I of the In-Out Algorithm and number of assortments to evaluate for the enumeration

method and In-Out Algorithm.

In terms of managerial insights, we find that the MP heuristic, which is the fastest, performs

the worst of the four heuristics, which points to the idea that focusing solely on the profitability

of the products independently of the nature of customer preferences does not benefit a retailer.

7. Robustness study

In this section, we study how the optimal solution to a given problem varies with the key parameters

of our model. In particular, we answer the following question: how much profit is left on the table

if the firm uses the wrong value for some key parameters of the model such as the proportions of

customers of each type, the profit margins, the fixed cost or the substitution cost? In practice these

values might be hard to estimate and/or they may evolve over time so the chosen assortment may
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not always be based on the most accurate numbers. Since there are some switching costs involved

with changing the assortment, the firm needs to know when it is necessary to re-evaluate the chosen

assortment following a change in the environment, such as a promotion or a decrease/increase in

costs.

We answer this question numerically. In all cases, our methodology is as follows. We first calculate

the assortment Sr which is optimal for a given set of parameter values called the base set (the

optimal solution is obtained using the In-Out Algorithm). The base set represents the values used

by the firm, which may not be the correct ones. Then we vary some of the parameters (one at a

time) around the base set. These numbers represent the ‘correct’ parameter values. Using these

numbers, we compute the optimal profit π∗ and the profit of assortment Sr under the correct

parameters. Then we calculate the percentage optimality gap of assortment Sr, which measures

the percentage loss in profit from not using the correct values of the parameters.

First we provide an example which shows that the optimality gap can be higher than 100%. In

this example, we assume that the firm has correctly identified the set of possible consumer types in

the population but has incorrectly calculated the proportion of customers of each type (for example,

because it has neglected the impact of a recent promotion campaign by the manufacturer).

Example 8. Let n= 2. Suppose π1 = 10, π2 = 3,T + = {(1), (2), (1,2)}, p= 0, f(k) = 0 andK = 2.

The firm believes that α̃(1) = α̃(1,2) = 0.1 and α̃(2) = 0.8 and chooses assortment Sr = {2}. However,

the true proportions are α(2) = α(1,2) = 0.1 and α(1) = 0.8 so the profit of assortment Sr is -1.4,

whereas the profit of the optimal assortment ({1}) is 7. The resulting percentage optimality gap

is 120%.

We study the average optimality gap over 1000 problem instances when varying one parameter

at at time.4 In each problem instance, the base values are as follows. The number of products

and types is set equal to 5. The profit margins are obtained using a discrete uniform distribution

between 1 and 20. We set p= f(k) = 0 and K = 1. The types in T + are randomly generated and

each type in T + is equally likely, i.e ατ = 1
|T +| .

We study the impact of the consumer choice model by considering every possible vector ατ

such that each component is a multiple of 0.2. We study the impact of product profit margins

by allowing each πj value to vary in {−50%,−25%,0,+25%,+50%}. We study the impact of the

fixed cost by letting K ∈ {0,0.5,1,1.5, ...,5}. Finally we study the impact of the substitution cost

by letting b∈ {0,0.25, ...,2}.

4 In order to avoid cases where the average optimality gaps are dominated by a small number of extreme cases with
very high values, we bound the values obtained by 100%. Hence our results are on the conservative side.
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Figure 1 Optimality gaps with respect to (a) α vector (b) π vector (c) fixed cost K (d) substitution cost b

Our results are shown in Figure (a) to (d). In (a) we show that average optimality gap as a

function of the sum of absolute deviations between the correct α vector and the value from the base

set. In (b) we show the average optimality gap as a function of the sum of percentage deviations

correct the π vector and the base set. In (c) to (d) we show the average optimality gap as a function

of the correct K and b values.

It is not surprising to see that in all four cases, the optimality gaps increase as the deviations

between the correct parameters and base values increase (for the fixed cost K remember that the

base value is K = 1 so that the curve in (c) first decreases then increases). The most important

insight comes from comparing these values across all four graphs. We see that miscalculating the

value of the substitution cost b has little impact on the profit of the chosen assortment but this is

not true for the α, π vectors and K. For example, a deviation of 0.4 in the α vector, e.g., assuming

that α= (0.2, ...,0.2) when the correct value is (0.3,0.1,0.3,0.1,0.2) leads to an average 2.32% loss

in profit.

In conclusion we see that it is important for the firm to correctly evaluate the α and π vectors as

well as the fixed cost K. Using incorrect parameter values can lead to a substantial loss in profit.
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8. Conclusion

In this research we study the assortment planning model under a ranking-based consumer (RBM)

choice model. We demonstrate that while the RBM model is appealing, it is well known that

the enumeration and integer programming methods quickly become impractical as the number

of potential products to offer increases and that simple sorting rules often fail to find the opti-

mal solution and have very poor worst case bounds. We further show that dominated products,

i.e, products which are less profitable and less preferred than another product by all customers,

cannot be eliminated as they might be included in the optimal assortment. We designed an algo-

rithm, called the In-Out Algorithm, which always yields an optimal solution. In theory the In-Out

Algorithm has the same complexity as the enumeration method but in practice it is much faster:

more than 10,000 faster than enumeration for a problem with 20 products. Based on an extensive

numerical analysis we recommend the use of our In-Out Algorithm for problems with up to 25 to

30 products. For an assortment problem with more products, we recommend the use of Part I of

the In-Out Algorithm followed the GA heuristic (when the fixed cost is small) or the MB heuristic

(when it is large), but the firm should keep in mind that the solution may be sub-optimal. We

also show that it is important to correctly evaluate the consumer choice model, profitability of the

products and the fixed cost because using incorrect parameters can lead to a substantial loss in

profit.

We conclude our paper by discussing a few limitations of our research that we think are avenues

for future research. We make the assumption of fixed prices that allows us to use the RBM model

effectively. We recognize that this assumption is valid only when retailer charges the MSRP or

any other set price. While allowing for endogenous pricing in our model is desirable it also makes

the analysis fairly complex. Endogenous pricing will demand a consumer choice model where the

purchase probabilities are a function of prices, we hope to include these complex interactions in

our future work.

Another limiting assumption is the that of stock-out based substitution which obviates the need

for taking into account stock levels of the product. Under stock-out based substitution, the demand

for a product not only depends on the initial assortment, but also on the inventory level of the other

products. Also, the profit value depends on the sequence in which customers come to the store

(Mahajan and van Ryzin (2001a)). Although some research exists to understand the performance

of simulation based optimization (Mahajan and van Ryzin (2001a)) and optimal solutions under

special models (Honhon et al. (2012a)), we believe there is scope for improving the search for

optimal assortments in this space.
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