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Abstract
According to the American Cancer Society report (1999), cancer surpasses heart disease as the
leading cause of death in the United States of America (USA) for people of age less than 85. Thus,
medical research in cancer is an important public health interest. Understanding how medical
improvements are affecting cancer incidence, mortality and survival is critical for effective cancer
control. In this paper, we study the cancer survival trend on the population level cancer data. In
particular, we develop a parametric Bayesian joinpoint regression model based on a Poisson
distribution for the relative survival. To avoid identifying the cause of death, we only conduct
analysis based on the relative survival. The method is further extended to the semiparametric
Bayesian joinpoint regression models wherein the parametric distributional assumptions of the
joinpoint regression models are relaxed by modeling the distribution of regression slopes using
Dirichlet process mixtures. We also consider the effect of adding covariates of interest in the
joinpoint model. Three model selection criteria, namely, the conditional predictive ordinate
(CPO), the expected predictive deviance (EPD), and the deviance information criteria (DIC), are
used to select the number of joinpoints. We analyze the grouped survival data for distant testicular
cancer from the Surveillance, Epidemiology, and End Results (SEER) Program using these
Bayesian models.

1. Introduction
The fight against cancer, escalated in the early 1970s with the introduction of the National
Cancer Act during the presidency of Richard M. Nixon, has brought dramatic improvements
in prevention, screening, and treatment that have had a major impact on our ability to reduce
the cancer burden in the USA. The study of cancer trends in terms of all related measures
associated with cancer (i.e., cancer mortality, incidence, prevalence and survival) is very
helpful in understanding the impact and effectiveness of all our efforts on extending the life
of cancer patients and reducing the occurrence of new cancer and cancer deaths.
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Joinpoint models (Kim et al., 2000) have recently been used to model the progress and trend
of cancer mortality rates, which not only provide the varying trend information, but also
indicate the significant time points at which the measures experience a promising
improvement that may relate to earlier detection or better treatment. Such models can also
be used for incidence data to evaluate the trend of the cancer burden (Ries et al., 2006).
However, analyzing cancer incidence and mortality is not always enough to understand the
benefits of medical breakthroughs in cancer as it does not provide information on the
situation of the patients during their lifetime after diagnosis.

To better understand life after diagnosis, we use the net survival rate (Cronin and Feuer,
2000), which is a key measure for the population to assess the chance of cancer survival
after diagnosis till the occurrence of death due to cancer. The survival time is usually
defined as the time from diagnosis to death. Assuming that a person may survive for many
more years after being diagnosed with cancer, information on survival rates can play an
important role in planning treatment strategies. In addition, differences in survival rates
between defined subgroups of patients allow clinicians and policy makers to better target
interventions. The survival trend may not have such a big increasing or decreasing pattern as
we observe for incidence or mortality, but as discussed in Feuer et al. (1991), the survival
rate usually improves dramatically after the introduction of an effective treatment, and then
levels off after the dissemination of the cancer treatment has been fully realized to the
population, thus indicating a possibility of the presence of multiple numbers of change
points in survival function. Here, we consider incorporating a joinpoint model into the
survival model for capturing possible big changes in survival trend. Besides treatment,
survival may also be affected by the introduction and dissemination of new screening
techniques and prevention activities. Therefore, it is essential to model the trend of survival
at the population level to understand the change in survival patterns over time and to assess
the effort of the whole country in improving the survival chance and extending the life of
cancer patients.

There are three national cancer data sources in the USA, namely, the national cancer data
base under the Commission on Cancer of American College of Surgeons, the Surveillance,
Epidemiology, and End Results (SEER) program under the National Cancer Institute (NCI),
and the National Program of Cancer Registries (NPCR) under the Centers for Disease
Controls (CDC). However, the national cancer database is actually hospital based, not really
population based, and the NPCR does not require the collection of survival data. The SEER
data (1973–current) is the unique source of population-based data for providing a good
cancer survival trend estimation and for identifying the points of dramatic changes in the
survival trend at the population level with long-term follow-up. Starting from 1973–75, the
SEER program included 9 registries covering almost 10% of the USA population (SEER 9
registries), and then went through several expansions in the early 1990s and 2000 (SEER 13
and SEER 17 registries). Currently, there are 17 registries and about 26% of the total USA
population is included in the areas covered by the SEER 17 registries, excluding Alaska.

The SEER population data is not very precise in terms of patients' personal information
because of confidentiality issues. Specifically, the SEER program does not disclose the
exact survival time for each subject, but the survival months. The SEER program provides
the number of patients alive at the beginning of a time period (month or year), the observed
number of deaths during this period, and the cause of their death. Therefore, we do not have
exact individual survival data, but the grouped survival data. To capture the change of trend
in survival, instead of overall survival improvement, we model the population survival trend
with joinpoints to analyze the SEER grouped survival data.
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In this article, we consider a Bayesian approach to joinpoint regression for population-based
cancer survival data. In particular, we use a Poisson regression model (Frome, 1983; Raftery
and Akman, 1986) for the number of deaths, by intervals, as it is more appropriate for rare
cancer sites with a small number of deaths or for cancer sites with good survival. Our model
also incorporates the covariates. The inclusion of covariates can change both the number and
the location of joinpoints, as we show in the analysis of our data. Thus, we build a more
flexible model that can easily accommodate multiple covariates. While Joinpoint software
(http://srab.cancer.gov/joinpoint/) assumes that the joinpoints occur on the discrete time grid
and searches for the joinpoints using a grid search method (Lerman, 1980), we allow an
option for implementing a discrete or a continuous prior (see, for example, Carlin et al.
(1992)) distribution on the locations of the multiple joinpoints under a Bayesian paradigm.
These priors also allow the user to impose prespecified minimum gaps in between two
consecutive joinpoints. The confidence intervals for the joinpoints derived using the
Joinpoint software are based on asymptotic results and are reported in Lerman (1980) and
Feder (1975). These asymptotic distributional results may not hold if the “true” model
contains a smaller number of joinpoints than the fitted model. The proposed Bayesian
method not only overcomes this drawback, but also provides a measure of uncertainty
related to the number and locations of joinpoints in the data. In addition, the parametric
distributional assumptions for the slope parameters of the relative survival model are relaxed
by using a semiparametric Bayesian method, wherein, instead of assuming the slopes to be
normally distributed, they are assumed to follow a mixture of normals. The class of mixing
distributions proposed is quite large. In particular, we assume a Dirichlet process (DP) prior
(Ferguson, 1973; Antoniak, 1974) on the mean of the normal distribution for the slopes,
resulting in a DP mixture (DPM) prior. For the model selection, to choose from the (K + 1)
models, M0, M1, …, MK, corresponding to no joinpoints, one joinpoints, …, up to K
joinpoints, we use three model selection criteria, namely, the conditional predictive ordinate
(CPO; Chen et al., 2000, Chapter 10), the deviance information criterion (DIC; Spiegelhalter
et al., 2002), and the expected predictive deviance (EPD) based on a posterior predictive
distribution (Laud and Ibrahim, 1996).

The rest of the paper is organized as follows. In Section 2, the joinpoint survival model for
grouped survival data is introduced. The priors for the parameters in the joinpoint survival
model are discussed in Section 3. The measures for model selection are included in Section
4. In Section 5, we illustrate the application of the parametric and semiparametric Bayesian
joinpoint models on the testicular cancer survival data from the SEER database using the
Markov Chain Monte Carlo (MCMC) methodology. This article ends with a discussion in
Section 6.

2. Joinpoint survival models for group survival data
Let T denote the survival time, x the year of diagnosis, and z the vector of other covariates,
such as race, age, and sex, etc. The change in survival trend could occur at any calendar time
x. We assume a proportional hazards model for modeling the hazard for surviving after
diagnosis, and thus the hazard function for surviving t years since diagnosis for persons
diagnosed with cancer is modeled as follows:

(1)

Here λ0(t) is the baseline hazard, and
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(2)

indicates the trend in hazard with respect to calendar time x and other covariates of interest
z, and (x − τk)+ = x − τk if x − τk > 0, and 0 otherwise. We assume that the maximum number
of joinpoints in the model is a known finite number, K. We write the parameter vector as θ =
(γ, β, δ, τ), where γ = (γ1, …, γJ), β, δ =(δ1, …, δK) and τ = (τ1, …, τK) are the covariate
parameters, the slope parameters, and the joinpoints, respectively. The survival model, with
h(x,z) defined as in (2), is referred to as a K-joinpoint survival model (Zelterman et al., 1994;
Luo et al., 1997), as there are K + 1 segments, with the slope coefficient β1 = β, and

, k = 2, 3, …, K + 1 (see, for example, Zelterman et al. (1994), Luo et al.
(1997) and Chang and Huang (1997)). It is important to note that the joinpoints are
introduced, not in survival time t, but in the year of diagnosis x, and they represent the
relative change in the hazard at t with respect to x.

In the SEER program, individual survival time after diagnosis is not available. Instead, as
mentioned earlier, the survival times after diagnosis are grouped into intervals Ij = [tj−1, tj), j
= 1, 2, …, J, where t0 = 0, and tj = J is the end of follow-up. The lengths of the intervals are
defined as one-year, the event as the death due to cancer of interest, and the people dying
from other causes or lost to follow-up are considered as censored. For the patient cohort
diagnosed in year x with age z, let nxzj be the number of people alive at the beginning of
interval Ij,dxzj be the number of cancer deaths, and lxzj be the number of patients lost to
follow-up or dying from other causes in interval Ij. Following Gail (1975), the adjusted

number of person-years at risk is .

A binomial distribution can be used to model the number of deaths from the cancer of
interest in each interval (i.e., year). However, the binomial distribution may not be an
appropriate assumption for rare cancers with a smaller number of deaths or cancer sites with
good survival. Sometimes, there are even no deaths in certain intervals. In this scenario, we
advocate the use of a Poisson distribution instead of a binomial distribution for the observed
number of deaths, i.e., we assume that the number of cancer deaths in Ij follows a Poisson
distribution, dxzj ~ Poi(rxzj × λj(x,z)). Note that λj(x,z) is the death rate during the interval Ij
given that a patient is alive at the beginning of the interval Ij, and is given by

(3)

and S(t|x, z) = S0(t)exp{h(x,z)} is the survival function under the proportional hazards
assumption, with S0(t) as the baseline survival function.

The likelihood function for the grouped survival data Y = {x, z, (rxzj, dxzj), j = 1, …, J}, is
then

(4)
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To estimate cause-specific survival, we require accurate information on the cause of death.
However, the information on cause of death is not always available in the population data
base. Thus, when the event of interest is death due to a certain disease and the cause of death
is not known, it is not possible to accurately estimate the number of cancer deaths due to the
disease in question. Therefore, we may not have accurate values of dxzj in Eq. (4). In such
situations, the relative survival rate or ratio (Edere et al., 1961), defined as the observed
survival rate in patients for a specified time interval divided by the expected survival rate in
the same time interval in a healthy population free of the cancer of interest, is an alternative
way to estimate the cancer net survival. In relative survival analysis, dxzj is defined as the
number of patients dying from all causes instead of the cancer of interest. lxzj becomes the
number of patients lost to follow-up during interval Ij. We then assume that

where (1 − λj(x, z)) is the interval relative survival probability and Ej(x, z) is the expected
probability of surviving interval Ij for a healthy population that can be obtained from the life
tables for the general population (National Center for Health Statistics, 2003). Thus (1 −
λj(x, z))Ej(x, z) is the overall survival probability for interval Ij. The likelihood for the
relative survival analysis, given D = {x, z, rxzj, dxzj, Ej(x, z), j = 1, …, J}, is then

(5)

From Eqs. (1) and (5), we have

(6)

Let . Then, the baseline survival function can be expressed as

.

In the above set up, z is a vector of multiple covariates; however, in our following analysis,
we treat it as single covariate age associated with the parameter γ. The annual percentage
rate (APC) in death rates in the kth segment is APCk = [exp(βk) − 1]100%. A negative value
of APC implies that the death rates λj(x, z) decrease as x increases.

3. Prior distribution
Let π(θ) be the joint prior distribution of θ and let L(θ|Y) be the likelihood function given by
(4) for survival analysis. The joint posterior distribution of θ is
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We assume that the prior distributions for the parameters are mutually independent, i.e.,

In particular, we assume conjugate priors for the model parameters:

.

In addition to the specification of prior probability distribution for θ, we also assume that the
hyperparameters (γ0j, δ0k, A0j, d0k) are independent and have the following priors:

γ0j ~ N (μα, τα); δ0k ~ N(μδ, τδ); A0j ~ IG(c1, d1); d0k ~ IG(c2, d2), where IG(c, d) denotes an
inverse gamma distribution with shape parameter c and scale parameter d.

The prior specification of the random slopes δk, k = 1, 2, …, K, is an important feature of the
model since it may crucially impair or influence the accurate estimation of the random
slopes associated with the joinpoint. Although the usual prior is the normal distribution for
the random slope δk, a normal distribution has limited flexibility because it is unimodal, thin
tailed, and fails to accommodate skewness. Thus, to bring more flexibility in modeling the
distribution for the random effects (i.e., the slopes δk at the joinpoints), we propose a robust
distribution to construct the priors for δk by using a Dirichlet Process (DP) prior (Escober,
1994; Escober and West, 1995; MacEachern, 1994; Ishwaran and James, 2001)). Thus we
assume the following:

(7)

(8)

where I is the indicator function, ν ≥ 0 is a scalar precision parameter and G0 is a parametric
baseline distribution. The above model can be better explained by the fact that the measure
G0 can be thought of as a prior guess of the distribution of random effects and ν as a
measure of the strength of this belief (Ferguson, 1973; Sethuraman and Tiwari, 1982; Basu
and Tiwari, 1982). Large values of ν lead to a G that is very close to G0. Small values of ν
allow G to deviate more from G0 and put most of its probability mass on just a few atoms.

The above formulation of the slope has three important implications: (a) it assigns positive
prior probabilities at 0 for each δk, to permit assessment of hypotheses that fewer slopes are
actually nonzero, and hence to infer values of the number of significant nonzero slopes, (b)
it better accommodates the lack of knowledge of the distributional structure by allowing a
richer class of distributions (compared to a parametric family) and (c) it gives positive
probability to allow the nonzero δk to cluster.

There are several ways to implement a DP prior. Recent research has focused on using the
following constructive definition of the DP (Sethuraman and Tiwari, 1982; Sethuraman,
1994) to produce MCMC algorithms:
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(9)

for r = 1, 2, …, ∞, with δZ denoting the degenerate distribution with all its mass at Z.
Because the infinite series in (9) is almost surely convergent, the random vector (pr, Zr), as r
increases to infinity, will have a diminishing effect on the prior distribution and thus on the
posterior distribution of δk. Thus, in practice one can truncate the above mixture at some

large R , and thus after the truncation G can be represented as

(10)

The advantage of this approximation is that the model reduces to a finite mixture model
(Ghosh and Rosner, 2007; Ohlssen et al., 2007) and can be fitted using the standard MCMC
methods and implemented in the freely available WinBUGS software (Spiegelhalter et al.,
2005).

The full Bayesian model in the present context is completed by assigning prior distributions
for the DPM parameters ν and G0. It is assumed that

(11)

The hyperparameters of all the above prior distributions are assumed to be known.

3.1. Prior for joinpoints
Thus, we assume two prior distributions for the multiple joinpoints: one is a discrete prior
(Tiwari et al., 2005) and the other is a continuous prior (Ghosh et al., 2009).

3.1.1. Discrete prior—Let x1, …, xm denote the diagnosis years in the observed data, and
let K ≪ m be the prespecified number of joinpoints. In the discrete case (Tiwari et al., 2005),
the prior for the joinpoints π(τ1, …, τK) is the product of

where x1, x2, …, xm denote the observed values of the covariate x (the year of diagnosis).
Note that the distribution of joinpoint τ1 is a discrete uniform on {xl+1, …, xm−l−k+1},
leaving out l(≥ 0) values of x at both ends, and the conditional distribution of τu; given {τu−1
= xl′} is also a discrete uniform distribution on {xl′+l+1, …, xm−l−K+u}, u = 2, …, K, leaving
out l data points at both ends.

3.1.2. Continuous prior—Sometimes a continuous prior may be more appropriate, as it
allows the joinpoints to occur anywhere on the continuous scale between the first and last
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observed diagnosis years x1 and xm, inclusively. Thus, assuming a continuous prior for
joinpoints may give a more accurate estimates of the joinpoints. Following Ghosh et al.
(2009), we define a continuous prior for joinpoints, by modeling the spacings or gaps among
the joinpoints instead of the joinpoints themselves. We consider the spacings τ1 − x1, τ2 −
τ1, …, τK − τK−1, xm − τK and normalize these spacings by dividing by the range xm − x1.
The normalized spacings then provide a partition of [0, 1] with a Dirichlet distribution
(Willks, 1962) as a natural prior. This is given by

(12)

This Dirichlet distribution can also be expressed as a vector of K + 1 independent Gamma
random variables with a common shape parameter and (possibly) different scale parameters
aj, j = 1, 2, …, K + 1, normalized by their sum; this characterization can be useful in Markov
chain sampling. Finally, when aj = 1, j = 1, …, K + 1, the resulting Dirichlet prior is an
uniform distribution on the simplex: a simple analogue to the uniform prior construction
considered by Tiwari et al. (2005) in the discrete case.

We can easily modify the above spacings prior to allow for some prespecified gaps. Thus,
one may decide to allow a gap of at least ϖj between τj−1 and τj, j = 1, …, K + 1 (here τ0 =
t1 and τK+1 = tn). This can be easily incorporated within our proposed spacings prior simply
by replacing (12) with

(13)

Similar priors have been considered in Bayesian piecewise regression models in other
contexts; see Green (1995), Denison et al. (1998), and Kass et al. (2003).

4. Model selection and model adequacy
In the joinpoint regression model, each joinpoint indicates a change in the underlying slope,
and often these changes are one of the primary interest of the analysis. Thus, a crucial issue
in joinpoint model is the selection of the number of joinpoints. More specifically, consider
the collection of (K + 1) models [M0, M1, …,MK], where Mk, 0 ≤ k ≤ K, for known K, refers
to the joinpoint regression model in (2) with exactly k joinpoints (M0 corresponds to the
simple regression model with no joinpoints). The selection of the number of joinpoints then
amounts to selecting a model from these (K + 1) choices.

We present three popular approaches to the model selection in our Bayesian analysis,
namely, the conditional predictive ordinate (CPO) (Gelfand et al., 1992; Chen et al., 2000),
the expected predictive deviance (EPD) (Laud and Ibrahim, 1996; Gelfand and Ghosh,
1998) and the Deviance information criterion (DIC) (Spiegelhalter et al., 2002).
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The CPO statistic is a very useful model assessment tool which has been widely used in the
literature in various contexts. For a detailed discussion of the CPO statistic and its
applications to model assessment, see Chen et al. (2000, Chapter, 10).

For the ith observation, the CPO statistic under model Mk is defined as

(14)

where  denotes the rest of the data after deleting the ith observation, θk is the set of
parameters of the model Mk and f (yi|θk) is the sampling density of the model evaluated at
the ith observation. The expectation above is taken with respect to the posterior distribution
of the model parameter θk given the cross-validated data . The CPOi can be computed
from the MCMC samples drawn from the posterior by using the simplification

where N is the number of simulations. Thus, CPOi can be interpreted as the height of this
marginal density or probability at yi. Large values of CPOi imply a better fit of the model. A
useful summary statistic of the CPOis is the logarithm of the pseudomarginal likelihood,
LPML, defined as

The model with larger LPML value is the better fitting model. Note that the LPML is always
well defined as long as the posterior predictive density is proper. Thus, the LPML is well
defined even under improper priors. Additionally it is computationally very stable.

Another summary measure for model selection is to use the predictive performance criterion
proposed by Laud and Ibrahim (1996) and Gelfand and Ghosh (1998). Given a finite number
of models, the criterion is based on the predictive performances of the models. Let ypred be
a replicate of the observed data vector yobs. The posterior predictive distribution of ypred
under model Mk is

(15)

where θk denotes the set of parameters under model Mk, f (θk|yobs) is the posterior density
and f (ypred|θk) is the density of the predicted value. The model selection criterion called the
expected predictive deviance (EPD) chooses the model M with smallest value of

where d(ypred, yobs) is a discrepancy function and the expectation is with respect to the
predictive distribution (15). We take d(ypred, yobs) = ‖ypred − yobs‖2, where ‖x‖2 denotes the
sum of squares of elements of the vector x.
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The third model selection method is the deviance information criterion (DIC) proposed by
Spiegelhalter et al. (2002). The DIC is defined as

where D(θk) = −2 log p(y|θk) is the deviance and  is the average posterior deviance,
 is the “effective dimension”, and  is an estimate of θk based on the data

y. The posterior mean E[θk|y] is often a popular choice for  and is the choice that is
implemented in the popular WinBUGS (2005) software, but other choices such as posterior
median or mode can also be used. Recently, Celeux et al. (2006) have pointed out that the
“effective dimension” pD can, in fact, be negative in the case of a mixture of distributions.
For mixture models, Celeux et al. (2006) suggested eight different modifications of the DIC.
The semiparametric model we proposed here utilizes a mixture structure, and we choose
DIC3 (based on terminology used in Celeux et al. (2006)) defined

Note that the second term is simply based on predictive distribution p(y|y) = Eθk [p(y|θk)|y],
and the model with the smallest value of DIC3 will be selected.

5. Application
We apply our proposed models to evaluate the survival trend on distant stage testicular
cancer survival data obtained from the SEER program. To avoid the accurate specification
of cause of death, in the following, we conduct only a relative survival analysis based on (4).

We analyze distant testicular cancer cases diagnosed from 1975 to 2003 with follow-up to
2004, from the SEER 9 registries. Thus, the maximum follow-up time is 29 years. There are
2039 patients diagnosed with distant testicular cancer included in this data for analysis,
which is about 12% of patients diagnosed with all stage testicular cancer in the SEER 9
registries during 1975–2003. The k-year actuarial survival probabilities with k = 1, 3, 5, and
10, over the year of diagnosis, for these patients are presented in Fig. 1.

We apply the proposed joinpoint model on the testicular data with maximum number of
joinpoints K = 3. Our primary reason for using a maximum of three joinpoints is that, in
practice, cancer survival trends typically do not depict too many changes in the overall
trends. In order to find the best model, we use the model selection criteria described in
Section 5, and compare between models, starting with no joinpoints, K = 0, and moving up
to K = 3 joinpoints. For each value of k = 0, 1, 2, 3 we compare the following four models.

Model 1: Model with discrete prior for the joinpoints and normal distribution for the
random effect δk.

Model 2: Model with continuous prior for the joinpoints and normal distribution for the
random effect δk.

Model 3: Model with discrete prior for the joinpoints and DPM prior for the random
effect δk.

Model 4: Model with continuous prior for the joinpoints and DPM prior for the random
effect δk.
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We assign weakly informative priors so that the analysis is dominated by the likelihood.
Specifically, we assume β ~ N (0, 1000). We do not use covariate z for this analysis. For the
concentration parameter ν of the DP prior we assume a ν ~ Gamma(.1, .1) distribution. This
choice of ν has a prior mean of 1. Note that ν = 1 signifies that the probability of generating

a new cluster is  when we have a sample of size J. To assess the effect of this parameter
on the inferences, we also considered a Gamma(2, 0.1) distribution for the concentration
parameter, and found the results to be very similar. We assume η−2 ~ IG(0.1, 0.1) and πk ~
Beta(1, 1) for the rest of the DP parameter.

For the continuous prior of the joinpoints, the following characterization of the Dirichlet
distribution, in terms of gamma random variables, is used to facilitate the computation. Let

, where τ0 = x1 and τK+1 = xm. Let g1, g2, …, gK + 1 be independent with gu ~

Gamma(au, 1). Then , u′ = 1,2, …, K follows a Dirichlet (a1, …, aK + 1); see
Willks (1962). We assume a Gamma(1, 1) distribution prior for gu.

The posterior distributions are analytically intractable. We use a Gibbs sampler (Gelfand and
Smith, 1990) to obtain samples from the posterior distributions. We implement our model in
the publicly available software WinBUGS and R (R Development Core Team, 2006). We ran
two chains of the Gibbs sampler with widely dispersed initial values. The initial values for
the fixed parameters were selected by starting with the prior mean and covering ±3 standard
deviations. The initial values for the precision were arbitrarily selected. For each model
parameter, the posterior distribution was examined visually by monitoring the sample traces,
means and density estimates from the two sequences, as well as by observing the
corresponding R-statistic (Gelman and Rubin, 1992). Each sequence was run for 25,000
iterations with a burn in of 10,000 samples. Thus, the remaining 15,000 samples in each
sequence were combined to yield a total of 30,000 samples upon which the posterior
inference is based.

Table 1 presents the comparison among models with different numbers of joinpoints using
the three different model selection criteria. Note that higher LPML values and lower EPD
and lower DIC3 values correspond to models with better fit, and we do not have the model
selection values under DP when K = 0 or K = 1 as in this case we have zero and only one
random slope, respectively. We note that the model with k = 2 joinpoints always has higher
LPML values and lower DIC3 and EPD values. Here, the measures for models with the
DPM prior are consistently lower than those with normal priors for the slope δk when the
priors for the joinpoints are the same (model 3 vs. model 1 and model 4 vs. model 2). Thus
the DPM prior gives a better fit. There is no advantage in using the continuous prior for
joinpoints over the discrete prior in this case. Even though continuous priors for joinpoints
bring more accurate estimates for the joinpoints, it also brings more penalty because of the
increasing parameter dimension. Actually, for this testicular analysis, the DPM model with a
discrete joinpoint prior has the best numerical values.

From the model selection results in Table 1, we note that Model 3 with two joinpoints is the
best fitting model. Thus, we report the parameter estimates for k = 2 under Model 3 in Table
2.

The point estimates of the two joinpoints for the testicular cancer data under Model 3 came
out to be at 1977 and 1995. The APC of death rate is decreasing about 30% each year before
1977 with the introduction of platinum therapy in 1974 (Higby et al., 1974) and the
establishment of the standard regimen of PVB (cisplatin, vinblastine and bleomycin) in 1977
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(Feuer et al., 1994). The improvement in survival is slower but still with an APC of −4%
during the period 1977–1995. The improvement stopped around 1995 and the APC of death
rate started to increase slightly (estimated slope as 1.8% with credible interval bigger than 1)
every year after 1995.

Age may play an important role in survival trend. The average age of diagnosis of the cancer
patients changes over time as shown in Fig. 2. We reanalyze the data with age as a covariate.
In this case the model with two joinpoints also got selected. However, the estimates of the
joinpoint shifted across the models (see Table 2). The coefficient for age is positive, which
implies that the death rate increases as age increases. The first joinpoint without age
adjustment is around 1977, but it is around 1988 after we included age as a covariate. The
second joinpoint, detected at 1995 without age as a covariate, no longer exists. However,
another joinpoint around 2000 is detected when we include age as a covariate. The first
joinpoint detected by the model around 1988 with age as a covariate may reflect a large
treatment improvement for testicular cancer before the mid-1980s, without confounding of
age. According to the results from the model with age as a covariate, after 1988, the hazard
rate decreases (with negative APC values) for distant stage testicular cancer. We also
noticed that the death rate increases by 1.8% after 1995 from the model without age
adjustments, but after we include age in the model, the rate becomes flat after the 1990s,
which indicates that the pattern of decrease in survival from the model without age may be
explained by the increase of age after the early 1990s (Fig. 2). A comparison of the results
from models with and without age as a covariate show that it is important to consider age in
survival trend analysis.

6. Conclusion and discussion
We have proposed parametric and semiparametric Bayesian joinpoint survival models for
analyzing grouped survival data and used these models to analyze the survival trend of
testicular cancer. Our method can easily be extended to conduct cause-specific survival
analysis if the information on cause of death is available and of good quality. Although the
semiparametric model gives similar posterior estimates of the parameters compared with
parametric model, the semiparametric model gives a better model fit with shorter credible
interval for the joinpoints. Three different model selection methods, namely, the LPML,
EPD, and the DIC, were adapted and employed to assess model fit, and the performance of
the three criteria is very consistent in selecting the best model. We also consider model
selection in the model space search. The proposed joinpoint survival model was further
extended to include age as a covariate in the testicular cancer example. We have shown that
covariates may affect the number of joinpoints.
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Fig. 1.
Actuarial 1-year, 3-year, 5-year, and 10-year cumulative survival probability for patients
diagnosed with distant testicular cancer during 1975–2004.
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Fig. 2.
Average age of diagnosis for patients with distant testicular cancer.

Ghosh et al. Page 16

Comput Stat Data Anal. Author manuscript; available in PMC 2011 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ghosh et al. Page 17

Table 1

Model comparison for distant testicular cancer survival data.

Model selection criteria Number of joinpoints

K = 0 K = 1 K = 2 K = 3

Model 1

LPML −500.17 −510.17 −489.536 −506.086

EPD     58.25     51.13 48.41 52.81

DIC3   992.38   972.06 939.129 964.33

Model 2

LPML −500.17 −562.17 −490.45 −585.67

EPD     58.25     52.12 51.89 53.19

DIC3   992.38   971.69 960.21 969.08

Model 3

LPML NA NA −484.046 −489.573

EPD NA NA 48.18 51.09

DIC3 NA NA 923.429 953.2

Model 4

LPML NA NA −488.188 −583.503

EPD NA NA 48.37 51.97

DIC3 NA NA 949.658 960.746
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Table 2

Parameter estimates and credible intervals (CIs) under Model 3 for testicular cancer data.

Without covariate With covariate

β −0.3491 (−0.4743, −0.1626) −0.46 (−1.7, 0.04)

γ (age) –    0.23 (0.14, 0.43)

τ1    1977 (76, 80)    1988 (83, 94)

τ2    1995 (89, 99)    1999 (90, 02)

APC1  −0.2924 (−0.3777, −0.15)  −0.6309 (−0.95, −0.24)

APC2  −0.0354 (−0.0578, −0.0141)  −0.009 (−0.02, 0.006)

APC3     0.018 (0.0069, 1.451)  −0.006 (−0.03, 0.009)
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