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Summary
Dementia is characterized by accelerated cognitive decline before and after diagnosis as compared
to normal aging. It has been known that cognitive impairment occurs long before the diagnosis of
dementia. For individuals who develop dementia, it is important to determine the time when the
rate of cognitive decline begins to accelerate and the subsequent gap time to dementia diagnosis.
For normal aging individuals, it is also useful to understand the trajectory of cognitive function
until their death. A Bayesian change-point model is proposed to fit the trajectory of cognitive
function for individuals who develop dementia. In real life, people in older ages are subject to two
competing risks, e.g, dementia and dementia-free death. Because the majority of people do not
develop dementia, a mixture model is used for survival data with competing risks, which consists
of dementia onset time after the change-point of cognitive function decline for demented
individuals and death time for non-demented individuals. The cognitive trajectories and the
survival process are modeled jointly and the parameters are estimated using the Markov chain
Monte Carlo method. Using data from the Honolulu Asia Aging Study, we show the trajectories of
cognitive function and the effect of education, apolipoprotein E 4 genotype and hypertension on
cognitive decline and the risk of dementia.
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1. Introduction
Dementia is a progressive degenerative disease that generally presents with decline in
cognitive function over a period of many years. In the preclinical phase, changes can be
gradual and usually difficult to distinguish from the less marked decline associated with
normal aging. As dementia progresses, cognitive impairments become more obvious and
decline in function begins to accelerate. It is important to understand the shape of this
decline and the time at which cognitive evolution of subjects who develop dementia
becomes distinguishable from that of normal aged subjects (Sliwinski et al., 2006; Wilson et
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al., 2003). As more effective treatments become available for dementia, it becomes
increasingly important to develop and implement strategies to identify individuals with
preclinical dementia at an earlier phase.

Change-point models have been used to describe the trajectory and trend of longitudinal
measurements (Smith, 1975; Stephens, 1994). Hall et al. (2000) use a piecewise linear
mixed model to compare the trajectories of cognitive functions for incident cases of
dementia and for subjects free of dementia at their last follow-up. Later, Hall et al. (2001)
use a Bayesian change-point model to describe the cognitive decline of demented subjects.
As Jacqmin-Gadda et al. (2006) point out, because subjects who are not demented before the
end of the follow-up are classified as non-demented, the analysis may be biased or lack
statistical power due to misclassification. Subsequently, Jacqmin-Gadda et al. (2006)
combine a piecewise polynomial mixed model with a random change-point for the evolution
of the cognitive test and a log-normal survival model for the time from change-point to
dementia onset. A Gauss-Hermite quadrature is used to approximate the likelihood function
and the maximum likelihood estimates (MLEs) are obtained using the Maquardt
optimization algorithm. The model is attractive, but the computation is difficult.

In addition, there are several complicate issues of modeling the trends of cognitive function
in aging studies. First, because of the long history of disease progression, subjects without
dementia at their last visits may be in the preclinical phase of dementia. Treating them as
non-demented will bias the comparison between normal and pathological aging. Second,
prevalent cases of dementia are excluded because their onset ages are not known, thus
creating left truncation. Third, people may die from other causes without having dementia.

Jacqmin-Gadda et al. (2006) address the first two issues by modeling cognitive decline using
a change-point model, but they did not consider the effect of competing risk. In their model,
dementia onset time follows a proper survival function, which implies that all subjects
would eventually develop dementia. Although dementia is a common disease for older
people, most people do not develop dementia in their lifetime and are dementia free at death,
producing a competing risk scenario. It is critically important to include the effect of
competing risks because many elderly individuals will die while still in the preclinical phase
of the development of dementia and cognitive function has been shown to decline
significantly with proximity to death (Sliwinski et al., 2006; Wilson et al., 2003).

Here we provide a unified framework that accounts for all the issues together. We
considered two competing risks, i.e., dementia and dementia-free death. The Bayesian
change-point model for cognitive trajectories and the mixture survival model for dementia
onset and death are estimated jointly. The proposed model extends the approach by
Jacqmin-Gadda et al. (2006) in several ways: The joint model can handle left-truncated and
interval-censored survival data and can easily incorporate multiple covariates. It takes the
dementia-free death into account when estimating the time from acceleration of cognitive
decline to dementia onset. The Markov chain Monte Carlo method is used for parameter
estimation, which is simpler to implement than the direct maximization of likelihood
function.

2. Statistical Models
Here, the primary time scale t is age. Let Yi(t) be the cognitive score of subject i at age t and
let xi be the corresponding covariate vector, which could be time-dependent, i = 1, …, N.
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2.1 Trajectory of cognitive function
Let Yij = Yi(tij) be the cognitive score at at age tij for j = 1,…, ni for the ith subject. The
scores Yij can be described by a random change-point model, where

(1)

where a+ = max(0, a), τi is the change-point of cognitive function and K1 and K2 are the
numbers of terms related to age and time from change-point. The independent random error

. The coefficients μk;i may depend on covariates xi and random effect bki,

(2)

where the random effects . Equation (1) implies a continuous transition at
change-point which agrees with the clinical belief of a progressive decline in the pre-
diagnosis phase of dementia. Hall et al. (2001) used a quadratic model with K1 = K2 = 2 and
found that the quadratic terms were not significant. While Jacqmin-Gadda et al. (2006) did
not use the linear term (tij − τi)+, in part due computational difficulty.

2.2 Probability of developing dementia
Let D be the type of two competing risks, where D = 1 means dementia, D = 2 means
dementia-free death. The probability of developing dementia is given by

(3)

2.3 Change point of cognitive decline
If a subject dies without dementia, then the change-point of cognitive decline does not occur
and we set τi = ∞, implying that the subject does not experience the acceleration of
cognitive decline before death. If one develops dementia before his death, we assume that
the change-point τi follows a normal distribution  with the constraint that τi is
between 0 and the maximum age in the data. Furthermore, μτ may also be related to
covariates μτ = γ0 + γ1x. Marginally the change-point τi takes a mixture distribution:

2.4 Sub-survival function of competing risks
Conditional on event type D, the survival functions of event times are denoted by Sd(t) =
Pr(T ≥ t|D = d), d = 1, 2. Here T is the event time, which is the dementia onset age for D = 1
and the age of death for D = 2. For demented subjects (D = 1), we assume that dementia
onset age follows a Weibull model with S1(t) = exp(−λ1tr1), where λ1 is related to both
covariates and the change-point as λ1 = exp(η1x + ζ log τ). For subjects who die without
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dementia, the death age also follows a Weibull model with S2(t) = exp(−λ2tr2), where λ2 =
exp(η2x). Thus, the event time takes a mixture distribution with overall survival

(4)

When dementia-free death is treated as censored and πi = 1, it reduces to the dementia risk
model by Jacqmin-Gadda et al. (2006).

Note that technically the covariates can be used in the components μk;i, πi, μτ, λ1 and λ2. In
practice, the selection of a covariate into which component should be guided by scientific
evidence and statistical criteria. If too many variables are incorporated or too many random
effects are included, the computation could be slow and one may run into convergence
problem. To ensure that the meaningful parameter estimates are not driven by the prior, one
can pick priors with wide ranges and try different initial values to ensure the estimates are
not driven by the prior. Another important issue is the interpretation of the parameter
estimates corresponding to the covariates. Inclusion of a covariate in a regression model
results in both the outcome and other covariates (X) being adjusted for that new covariate
(Z). In a complex nonlinear model, the parameter for Z should be interpreted as the
conditional effect of Z adjusting for covariates X.

3. Estimation Method
Because the prevalent cases of dementia are excluded (Joly et al., 1998), all subjects enter
the study free of dementia and the event times are left truncated. Let ai be the age of subject
i at the study entry. Usually the death times ti are observed exactly and the dementia onset
times are interval censored at (ti, ri). For the subjects who are still alive and dementia-free at
the end of followup ti, the event time is right censored and the event type Di = 0. Let α = (α0,
…, αK1+K2)T, β = (β0, …, βK1+K2)T and let θ = (α, β, σY, σk, γ,στ, δ, η1, η2, ζ, r1, r2).

Let yi be the vector of the ni measurements for subject i and fY (yi|τi) be the density of yi
given change-point τi. Let fτ (τi|Di) be the density of τi given event status Di and let fd(t) be
the density function of event time for event type d, d = 1, 2. The likelihood contribution for a
subject who develops dementia (Di = 1) during (ti, ri) is

and the likelihood contribution for a subject dying at ti without dementia (Di = 2) is

and the likelihood contribution for a subject who is alive and dementia free (Di = 0) at ti is

The overall likelihood function is given by
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Jacqmin-Gadda et al. (2006) used the Maquardt optimization algorithm to find the MLEs.
However, the computation is involved and only one covariate education is used.

Because the number of parameters is large and the joint likelihood is quite complicated, the
Markov chain Monte Carlo (MCMC) method is used to obtain the parameter estimates
(Chen et al., 2000). The MCMC method is implemented by the Bayesian inference package
BUGS (Spiegelhalter et al., 1999) and the open source of BUGS, called OpenBugs (Thomas
et al., 2006), is imbedded into the R package BRugs (R Development Core Team, 2007).
Assuming the elements of θ are independent of each other, the joint prior p(θ) can be
specified as the product of each individual prior. This is a common approach of obtaining
“noninformative” prior for joint parameters, which is often justified on the grounds that
“ignorance” is consistent with “independence” (Carlin and Louis, 2000, p36). In order that
the parameter estimation is driven by the observed data, we assign weakly informative
priors. In particular, we specify multivariate (univariate) normal priors for the location
parameters α,β, γ, η1, η2, δ, ζ, uniform priors for the standard deviations σY, στ, σk, k = 0, …,
K1 + K2 (Gelman et al., 2003, p593), and exponential priors for the shape parameters r1, r2.
The hyperparameters are assumed to be known.

In order to see how stable the final estimates are, multiple independent runs should be
carried out. The convergence of the MCMC samples of the parameters θ after excluding the
initial burn-in samples can be diagnosed using several criteria. The common methods of
assessing convergence are proposed by Geweke (1992), Heidelberger (1983) and Gelman
and Rubin (1992). The Gelman and Rubin method calculates the ‘potential scale reduction
factor’ for each parameter in θ, together with upper and lower confidence limits.
Approximate convergence is achieved when the upper limits are close to 1.

4. Application
The Honolulu Heart Program (HHP) is a prospective study of heart disease and stroke
involving a cohort of Japanese-American men born between 1900 and 1919 in Hawaii.
Clinical and demographic information were collected during three examinations in 1965,
1968–1970, and 1971–1974 (examinations 1–3). As an extension of the HHP, the Honolulu
Asia Aging Study (HAAS) was started in 1991 to study dementia prevalence, incidence and
risk factors. At the initial examination (examination 4) of the HAAS, 3,734 members of the
HHP cohort participated and they were at least 71 years old. Three subsequent follow-up
examinations were conducted in 1994, 1997 and 2000 (examinations 5–7). The death times
of the participants were recorded accurately until June 20, 2002.

Assessment of cognitive function and dementia was assessed during examinations 4–7 by
means of a multistep procedure. The 100-point Cognitive Abilities Screening Instrument
(CASI) was used to screen the entire sample. Dementia cases diagnosed in examination 4
were called prevalent cases and the cases diagnosed in examinations 5–7 were called
incident cases. There were 226 prevalent cases and 135, 112 and 52 incident cases
diagnosed at examinations 4–7, respectively. For details of the dementia diagnosis
procedure, see White et al. (1996). Because of the gap time between two examinations, the
dementia onset times were interval censored. The prevalent cases were excluded from the
analysis because their onset ages were left censored and they did not contribute to the risk
set of developing dementia (Joly et al., 1998). The 858 subjects who did not participate in
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any follow-up examination were also excluded because they did not carry any information
about the change in cognitive function. As a result, there were 2650 people with at least one
follow-up exam. The follow-up status and dementia diagnosis are shown in Table 1. The 82
subjects with non-monotone missing visits were excluded because their dementia diagnosis
times could not be accurately ascertained. The final data included 2568 subjects with only
monotone missing visits.

Three binary covariates, i.e., edu, hyp and apoe are used, where edu is the indiator of having
education more than 10 years, hyp is the self reported history of high blood pressure at
examination 1 and apoe is the indicator of being homozygous or heterozygous ApoE ε4
allele carrier. In the cohort, 59% have more than 10 years of education, 17% self-report a
history of hypertension at exam 1 and 18% are ApoE ε4 carriers. The reference group are the
subjects with lower education, no hypertension and without AopE allele.

First, we specify the longitudinal model for the trajectory of cognitive function. Because the
CASI scores are left skewed, we use the transformed score Y = log(101 − CASI) as the
response (Yip et al., 2002). So a higher transformed score means a lower cognitive function.
In Equation (2), only edu is used because education is the most important factor related to
cognitive function among the three. The mean change-point μτ = γ0 + γ1edu. Initially we let
K1 = 2 and K2 = 2, which assumes the cognitive decline for healthy aging and acceleration
of cognitive decline are both quadratic. We find that the quadratic term and random slope
before the change-point are close to 0 and its 95% confidence interval also covers 0, hence
these two terms are dropped. In the final model for cognitive function, K1 = 1, K2 = 2, and

(5)

This model is similar to the one by Jacqmin-Gadda et al. (2006), but here equation (5)
contains a term (tij − τi)+ after the change-point. All three covariates are used for the
probability of developing dementia. Both the variables edu and hyp are used in the scale
parameters λ1 and λ2 for the conditional sub-survival functions. In summary, μk = αk + βkedu
+ bk in Equation (2), π = [1 + exp{−(δ1 + δ2apoe + δ3edu + δ4hyp)}]−1 in Equation (3), λ1 =
exp(η11 + η12hyp + η13edu + ζ log τ), and λ2 = exp(η21 + η22hyp + η23edu).

Weakly informative priors are used for parameters. In particular, the prior for each
parameter in (α, β, γ, δ, η1, η2, ζ) is normal with mean 0 and variance 0.001. Each of the
standard deviation parameters is given a uniform prior U(0, 10). All these priors are highly
dispersed compared to their parameter ranges. Two MCMC chains with widely dispersed
initial values are simulated. The initial values for the fixed parameters are selected by
starting with the prior mean and covering ±2 standard deviations. Because of the large
sample size and slow convergence of the change-point model, 30, 000 samples are excluded
and the next 30, 000 samples with thinning factor 5 are used to calculate the posteriors. The
convergence of the MCMC simulations is reached based on the criteria described in Section
3.

Table 2 shows the parameter estimates and their standard deviations (SD) and 95%
confidence intervals (CI) for the longitudinal model for cognitive function and for the
mixture survival model for competing risks. The trajectories of the CASI score by dementia
status and education level are plotted in Figure 1. Jacqmin-Gadda et al. (2006) only show the
cognitive trajectories for subjects who developed (or will develop) dementia, here we are
able to calculate the trajectories for both demented and non-demented. For non-demented,
the scores are 90 and 93 at age 70 for individuals with lower and higher education and the
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trajectories are parallel by education level. For demented, the change-points are at age 73
and 85 for lower and higher education levels, respectively. The change-point for subjects
with higher education occurs later but the cognitive score declines with a faster rate
compared to those with lower education. At age 95, all demented subjects have similar
cognitive function regardless of their education level. The change-points are slightly
different from those found by Jacqmin-Gadda et al. (2006). These can be due to several
reasons: The study populations are different; the test instruments for cognitive function are
different; the education cutoffs are different and the diagnostic criteria might be applied
more or less aggressively. But both studies yield similar trajectories of cognitive function by
education level. The late change-point for subjects with higher education suggests the effect
of cognitive reserve.

For the probability of developing dementia, the subjects with higher education have a
significantly lower risk of developing dementia. Although the AopE 4 genotype and
hypertension increases the risk of dementia, their effects are not significant. The parameters
for sub-survival functions are also presented in Table 2. To evaluate the fit of the Weibull
models, we compare the marginal sub-incidence functions for dementia onset and dementia-
free death from the Weibull model and the method by Fine and Gray (1999). The cumulative
incidence curves from the two methods are almost identical for dementia onset and are
reasonably close for death (see supplementary documents for details), which indicates the
departure from the model assumption is not great. For demented, if two subjects have the
same change-point, the one with higher education has higher risk of dementia onset. For
non-demented, having hypertension significantly increases the risk of death, where
education is not significant.

Table 3 shows the estimates and the standard errors (SEs) of median years from the change-
point to dementia onset by education. When the change-point is at age 75, the medians are
8.3 and 4.1 years for the subjects with lower and higher education. For the subjects with
lower education, the medians from change-point to dementia remain similar for different
change-points. For the subjects with higher education, the medians are smaller for late
change-point, which implies that the cognitive function detioriates even faster if the changes
occurs later. The SEs for the subjects with lower education are wider. The trends of the SEs
by change point and education are consistent with the trends by Jacqmin-Gadda et al.
(2006).

5. Simulation
Conceptually, the difference of the proposed method and the method by Jacqmin-Gadda et
al. (2006) is whether death is treated as censored or as a competing risk. A simulation study
was carried out to examine the effect of modeling dementia-free death. For details of
simulation setting and parameter specifications, see supplementary documents.

A single binary covariate x is considered and the cognitive function is given by

where the change-point τ takes a mixture distribution with dementia probability P(D = 1) =
1/[1 + exp{−(δ0 + δ1x)}] and the mean of τ is μτ = γ0 + γ1x. The survival function for
dementia onset is S1(t) = exp(−λ1tr1) with λ1 = exp(η11 + η12x + ζ log τ) and the survival
function for dementia-free death is S2(t) = exp(−λ2tr2) with λ2 = exp(η21 + η22x). The truth
parameter values are specified based on the application. We set (η21, η22) = (−9.2, −1) or
(−10.2, 0) to examine the effect of competing risk. The standard deviation of the cognitive
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function σY = 0.1 or 0.05. We assume the maximum follow-up time is 10 years and the
cognitive functions are observed every 2 years until the event, i.e., dementia onset or death.
Each dataset consists of 200 observations and x=0 or 1 for half of the data. Both the
proposed method (PM) and the Jacqmin-Gadda et al’s method (JGM) are applied to each
dataset. The simulation shows the parameters for cognitive trajectories are unbiased for both
methods. Of primary interest are the parameters for the risk of dementia onset (η11, η12, ζ,
r1) and for the change-point (γ0, γ1). The final estimates are the averages based on 100
replicates and are summarized in Table 4.

We see that the results are similar for σY = 0.1 or 0.05. The estimates from the proposed
method for all four scenarios are nearly unbiased, which is reasonable because they are
based on the true model. Without considering the competing risk, the estimates from the
JGM are biased, reflecting the impact of model misspecification. For example, in the true
model η12 = 1.5 indicating a faster decline for x = 1. Because x has simultaneous effect on
dementia-free death, it could lead a contrary effect of x on dementia if the competing risk is
not taken into account. The median dementia onset years from the beginning of the study is

 for the reference group. By treating dementia-free death as censored, the
JGM tends to over estimate the median onset age. But the magnitude of the over-estimation
depends on the effect of x on dementia-free death. For the location of the change-points, the
JGM tends to over estimate the change-point for x = 0. The underlying model assumes a
mixture distribution for the change-point. The JGM assumes that every subject develops
dementia eventually and the trajectory, if not censored, consists of a change-point, so the
estimate from the JGM is in fact an average of true change-point and maximum age. The
simulation shows that the estimates by treating death as censored might be biased if the
underlying model is a mixture model. The amount of bias depends on the simultaneous
effect of covariates on the dementia-free death.

6. Discussion
In the spirit of Hall et al. (2001), we propose a Bayesian model with greater complexity but
simpler implementation than that of Jacqmin-Gadda et al. (2006). The alleviates the
practical difficulties in fitting cognitive trajectories and incidence model jointly through
maximum likelihood. This model can be used to model the trends of biomarkers in the
presence of competing risks. By modeling the longitudinal trajectories of cognitive function,
one can calculate the posterior probability of being healthy or demented (Skates et al.,
2001), which can be used for effective screening of dementia. Here we assume a truncated
normal distribution for the change-point. Because the probability of cognitive decline
acceleration should increase with age, an asymmetric model with higher probability for
older ages might be more appropriate. A possible extension is to use a Dirichlet process
prior to estimate the nonparametric distribution of a change-point.

However, there are several limitations about the current study. First, the cognitive
examinations in the HAAS had intervals of approximately three years. Many longitudinal
studies have observations at more frequent intervals, which would seem to offer improved
estimation of change-points. Statistically, it is useful to determine the ideal gap time
between two consequent examinations to improve the diagnosis of dementia as well as the
estimation of change-point. Second, the dementia cases are identified using a multi-step
procedure and there exists verification bias. The misclassification may cause bias to the
results. A subject who misses the previous diagnosis may either die before the next
examination or would be diagnosed in later examinations. Using the mixture model, the
subject who dies without diagnosis could be classified as preclinical phase of dementia. The
subject who is diagnosed in later examinations then has an 1–2 year delay in dementia
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diagnosis. Third, although the parametric Weibull models provides a good fit to the
mortality and dementia incidence rates, for general modeling of age-specific disease rate, the
parametric model may not be ideal and the penalized likelihood approach (Joly et al., 1998)
is a useful alternative.

The current approach provides a different perspective to disease history in the presence of
competing risks. The approach by Jacqmin-Gadda et al. (2006) considers disease
progression by treating deaths as censored and it can help understand the neurological
progression and biological etiology of the disease, while the current approach is appropriate
to describe the actual disease history because death is the primary competing risk of
dementia for the old. If the primary end point is cognitive function and dementia onset time,
one does not need to model the age of dementia-free death. This amounts to fitting a cure
model for dementia onset. The application of the cure model to dementia onset with
longitudinal biomarkers is an extension of the current model.

Here we focus on cognitive function before the clinical diagnosis of dementia, and the
cognitive test scores after the diagnosis are excluded. It is also of interest to know the
trajectory of cognitive function after dementia diagnosis in order to help understand the
progression of the disease. One common complication of the cognitive measure is the floor
and ceiling effects. This makes the assessment of cognitive change difficult because there is
not enough variation in the outcomes across individuals. Harvey et al. (2003) suggests
transformation as a partial remedy and we use the transformation log(101−CASI). One
option is to model the observed test score as a truncated sample of the latent cognitive score.
However, this will involve more complicated models for the outcome distributions. In the
analysis of competing risk data, the censoring or the competing risk might be correlated, it is
also useful to examine the effect of informative censoring on the parameter estimates.

In summary, the findings in this paper indicate the effect of cognitive reserve, i.e., the
acceleration of cognitive decline for the subjects with higher education occurs later but with
a faster rate compared to the subjects with lower education. This offers an independent
reinforcement of the results first reported empirically in Hall et al. (2007), which confirms
an important theoretical prediction by Stern et al (1999).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Trajectories of cognitive test CASI scores for demented and non-demented subjects by
education level *
*The demented subjects include those who already developed dementia and who will
develop dementia according to their cognitive history
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Table 2

Parameter estimates for cognitive trajectories and the mixture model for competing risks

Parameter Mean Median SD 95% CI

Longitudinal model for cognitive function

α0 2.410 2.406 0.033 (2.359, 2.505)

α1 0.050 0.050 0.003 (0.039, 0.055)

α2 0.038 0.037 0.012 (0.017, 0.065)

α3 −0.143 −0.137 0.104 (−0.378, 0.071)

β0 −0.379 −0.375 0.032 (−0.448, −0.320)

β1 0.007 0.008 0.003 (0.000, 0.013)

β2 −0.008 −0.010 0.024 (−0.049, 0.041)

β3 0.042 0.054 0.075 (−0.143, 0.167)

Parameters for the change-point

γ1 1.682 1.591 0.405 (1.030, 2.580)

γ2 11.410 11.647 0.493 (10.043, 11.940)

Logistic model for the probability of developing dementia

δ1 −1.368 −1.370 0.122 (−1.605, −1.128)

δ2 (apoe) 0.122 0.124 0.171 (−0.212, 0.453)

δ3 (edu) −0.454 −0.456 0.166 (−0.771, −0.116)

δ4 (hyp) 0.103 0.104 0.198 (−0.291, 0.488)

Sub-survival function for dementia after change-point

η11 −4.648 −4.622 1.991 (−9.450, −0.129)

η12 (hyp) −0.105 −0.096 0.233 (−0.599, 0.321)

η13 (edu) 0.992 1.150 1.025 (−1.445, 2.974)

ζ(τ) −1.210 −1.386 1.303 (−4.284, 1.775)

r1 2.373 2.360 0.235 (1.957, 2.895)

Sub-survival function for dementia-free death

η21 −10.086 −10.077 0.314 (−10.73, −9.475)

η22 (hyp) 0.274 0.278 0.092 (0.092, 0.444)

η23 (edu) 0.016 0.016 0.077 (−0.136, 0.161)

r2 3.442 3.439 0.103 (3.242, 3.654)
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Table 3

Estimate and the standard error (SE) of median years from change-point of cognitive decline to dementia

Median years from change-point to dementia

Lower Education Higher Education

Change point τ Estimate SE Estimate SE

75 8.3 1.72 4.1 2.34

80 9.6 3.07 3.3 0.62

85 9.3 4.98 1.4 0.42
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