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ABSTRACT 

Software quality has become an important concern in our daily lives.  Understanding the factors that 
influence software quality is crucial to the software industry.  An improved understanding of software 
quality drivers will help software engineers and managers make more informed decisions in controlling 
and improving the software process.  While many of the studies on software quality have focused on the 
measurement aspects of software quality, very few have analyzed the factors that could influence the 
quality itself.  One of the main reasons for this is the fact that the quality is measured in terms of ordinal or 
nominal data while the factors which are numerous, are measured in terms of indices or real numbers.  
Traditional techniques such as regression or analysis of variance which are generally used to measure 
the impact of different variables on the quality fail in such a situation.  On the other hand, techniques such 
as artificial neural networks, logistic regression or classification trees work better with dependent variables 
which are categorical or ordinal.  This paper demonstrates the use of these techniques to identify the 
factors that effect software quality and attempts to rank these factors in the order of their importance. 
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1. INTRODUCTION 
 
Software has become an integral part of our lives in recent days.  Most consumer appliances, including 
communication devices and automobiles, have significant software components. The most complex 
systems, such as airplane flight control or nuclear power plants, depend critically upon the reliability of 
software.  Today, the need to understand, control, and design quality software is of utmost importance 
[Gibbs, 1994].  While different metrics are used for measuring software quality, there are five disciplinary 
approaches widely used in quality definition.  These are Transcendent, Product-Based, User-based, 
Manufacturing-Based and Value-Based [Garvin, 1988].  Investigations by Usrey and Dooley (1996) 
suggest that there are several dynamic elements that effect quality attitudes.  Powerful mathematical 
tools exist for modeling dynamic systems. Software quality Models featuring interactions, delays, and 
feedback often produce unique and useful predictions. 
 
Software testing itself is an integral part of assuring quality.  National Institute of Standards & Technology 
(NIST) estimated that the national annual cost of an inadequate infrastructure for software testing in the 
USA is $59.5 billion. The same study estimated that the potential cost reduction from feasible 
infrastructure improvements is $22.2 billion.  This represents about 0.6 and 0.2 percent of the U.S.’s $10 
trillion dollar GDP respectively. Software developers accounted for about 40 percent of total impacts, and 
software users accounted for the about 60 percent [NIST, 2002]. 
 
 
Software quality assessment and quality assurance are developing into complex subjects.  The most 
traditional program analysis techniques are McCabe Cyclomatic Complexity (McCabe, 1976), Halstead 
Software Science (Halstead, 1977) volumetric techniques, and a wide range of specifically tailored 
structural and graph-based approaches developed over the last two decades.  Martin and Shafer (1996) 
used their own assessment methodology and its support tools to assess over 31 million lines of code in 
over four dozen languages.  
 
The best known and most thoroughly studied of what are classified as composite measures of complexity 
emerge from Halstead's theory of software science [Halstead 1977].   Halstead argued that algorithms 
have measurable characteristics analogous to physical laws.  His model is based on four different 
parameters: the number of distinct operators (instruction types, keywords, etc.) in a program, called nl; 
the number of distinct operands (variables and constants), n2; the total number of occurrences of the 
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operators, N1; and, the total number of occurrences of the operands, N2. The sum of nl and n2 is 
denoted as n while the sum of N1 and N2 is called N. From those four counts, a number of useful 
measures can be obtained.  Many researchers have used these measurable characteristics developed by 
Halstead in software quality. 
 
Khaddaj

 
and Horgan [2004] focused on software quality factors that should be taken into account in very 

large information systems.  Such systems will require a high degree of parallelism and will involve a large 
number of processing elements. They identified the metrics and measurement approaches that can be 
applied for sequential and parallel/distributed architectures and investigated a number of factors which 
are relevant to the parallel class systems. In such a system, many elements can fail which can have 
major impact on the system’s performance, and therefore it affects the costs and benefits.  They showed 
that portability and usability are other major problems that need to be taken into account when 
considering all the relevant factors that affect quality for such environments.  
 
Heemstra and Kusters [2002] focused on the “soft” factors that could influence the software quality.  Much 
discussion about software quality focuses on the technical aspects of the development process, with little 
regard for "soft" factors such as motivation, commitment, organizational culture, and other drivers 
important to achieving high product quality. They have presented a framework that can be used as a tool 
for rank ordering software quality drivers. 
 
Understanding the factors that influence software quality is crucial to the software industry.  An improved 
understanding of software quality drivers will help software engineers and managers make more informed 
decisions in controlling and improving the software process.  Paulk (2006) found that program size, 
(empirically measured) programmer ability, and disciplined processes significantly affect software quality. 
He also found that factors frequently used as surrogates for programmer ability such as years of 
experience, and technology variables such as programming language, do not significantly impact 
software quality, although they may affect other important software attributes such as productivity.  
 
While many of the studies on software quality have focused on the measurement aspects of software 
quality, very few have analyzed the factors that could influence the quality itself.  One of the main reasons 
for this is the fact that the quality is measured in terms of ordinal or nominal data while the factors which 
are numerous, are measured in terms of indices or real, quantifiable numbers.  Traditional techniques 
such as regression or analysis of variance which are generally used to measure the impact or influence of 
different variables on the quality fail in such a situation.  On the other hand, techniques such as artificial 
neural networks, logistic regression or classification trees work better with dependent variables which are 
categorical or ordinal in nature.   
 
This paper attempts to develop a methodology for identifying various factors that influence the software 
quality.  Most of the factors that are considered for the analysis are those which are measured routinely in 
the development of software.   
 
The objectives of the study are to (a) identify the appropriate techniques that could be used to isolate the 
factors that influence the software quality, (b) use the techniques so identified to rank these factors in 
terms of their relative importance in assuring software quality and (c) identify the factors that are likely to 
be critical in assuring software quality. 
 
2. METHODOLOGY 
 
Data with respect to a total of 7800 modules spread over a number of software projects was obtained for 
the analysis.  These modules are categorized into “good” or “bad” modules based on the errors contained 
in the modules.  There were 5362 “good” modules and 2438 “bad” modules.  The entire data set of 7800 
modules was divided randomly into two sets, one for training the model and the other for testing the 
model.  The training dataset consisted of 5900 module and the rest were in the testing dataset. 
 
The dataset contained information on various variables for each module.  A total of 40 such variables 
were identified for the purpose of the analysis.  Eight of these variables were the Halstead measures 



namely content, difficulty, effort, error estimate, length, level, time and volume.  Other variables are 
numerical in nature which include number of lines of code,  number of branches, blank lines, function 
calls, code-cum-comment lines, number of parameters in the module, number of comment lines, number 
of conditions, number of decision points, number of transfer of controls and number of nodes.  Other 
variables included cyclomatic complexity, design complexity, cyclomatic density, design density, essential 
complexity and density, global data complexity and density, as well as number of operators and 
operands.  The number of unique operands and operators in each module were also counted.  Certain 
other variables are derived from the above variables.  All the variables were normalized before carrying 
out the analysis. 
 
The following methodology was adopted for identifying the important factors that affect the software 
quality.  Three different techniques namely Artificial Neural Networks, Classification Trees and Logistic 
regression were used as training models for classifying each of the modules as “good” or “bad” module.  
Normally, the purpose of such classification models is to be able to predict the future models with the 
likelihood of “good” or “bad” categories.  In this paper, the classification models are built and the factors 
that are important for making the appropriate prediction are identified.  These factors or variables play an 
important role in prediction of “good” or “bad” modules and consequently these are the variables that 
have an impact of the software quality.  Initially, the prediction models are built using the training dataset 
and the effectiveness of these models is tested on the testing dataset.  This is a standard procedure to 
make sure that the models built on the training dataset are replicable and not a result of any accidental 
relationships.  A brief description of the three techniques used for the analysis is presented below. 
 
Artificial Neural Networks 
 
The artificial neural networks (ANN) are based on the concepts of the human (or biological) neural 
networks consisting of neurons, which are interconnected by the processing elements.  The ANNs are 
composed of two main structures namely the nodes and the links.  The nodes correspond to the neurons 
and the links correspond to the links between neurons.  The ANN accepts the values of inputs into its 
input nodes (or input layer).  These values are multiplied by a set of weights and added together to 
become inputs to the next set of nodes to the right of the input nodes.  This layer of nodes is referred to 
as the hidden layer.  Many ANNs contain multiple hidden layers, each feeding into the next layer.  Finally, 
the values from last hidden layer are fed into an output node, where a mapping or thresholding function is 
applied and the prediction is made.  The ANN is created by presenting the network with inputs from many 
records whose outcome is already known.  For example, the data on different variables of the first 
software module (first record) are inputted into the input layer.  These values are fed into the hidden layer 
and after processing the prediction is made at the output node.  If the prediction made by the ANN 
matches with the actual known status of the module (“good” or “bad”), then the prediction is good and the 
ANN proceeds to the next record.  If the prediction is wrong, then the extent of error  is apportioned back 
into the links and the hidden nodes.  In other words, the values of the weights at each link are modified 
based on the extent of error in prediction through a process called backward propagation.  The artificial 
neural networks are found to be effective in detecting unknown relationships.  ANNs have been applied in 
many service industries such as health to identify the length of stay and hospital expenses (Nagadevara, 
2004), and for predicting the categories of the members of the loyalty programmes (Nagadevara 2005).  
 
Logistic Regression 
 
Logistic regression is a specialized form of regression used to predict and explain a categorical 
dependent variable.  It works best when the dependent variable is a binary categorical variable.  The 
regression equation developed is very similar to a multiple regression equation with “regression-like” 
coefficients which explains the impact of each of the independent variable in predicting the category of 
the dependent variable.  One special advantage of logistic regression is that it is not restricted by the 
normality assumption which is a basic assumption in the regression analysis.  It can also accommodate 
non-metric variables such as nominal or categorical variables by coding them into dummy variables.  
Another advantage of logistic regression is that it directly predicts the probability of an event occurring.  In 
order to make sure that the dependent variable, which is the probability, is bounded between zero and 
one, the logistic regression defines a relationship between the dependent and independent variables that 



resembles an S-shaped curve.  It uses an iterative process to estimate the “most likely” values of the 
coefficients.  This results in the use of a “likelihood” function in fitting the equation rather than using the 
sum of squares approach of the regression analysis.  The dependent variable is considered as the “odds-
ratio” of a specific observation belonging to a particular group or category.  In that sense, logistic 
regression estimates the probability directly.  In order to get the best results from the logistic regression, it 
is important to have continuous variables as independent variables.  It is also important to define the 
nominal variables appropriately, so that they are converted into the required number of dummy variables.   
 
Classification Trees (C5.0) 
 
C5.0 is one of the popular methods of building classification trees.  The classification tree is built by 
splitting the observations at each node based on a single attribute or independent variable such that the 
resultant sub-groups are more homogenous with respect to the categories of dependent variable.  If no 
split that could significantly reduce the diversity of the dependent variable at a given node could be found, 
the process of splitting is stopped and the node is labeled as a leaf node. When all the nodes become 
leaf nodes, the tree is fully grown.  At the end of the construction of the tree, each and every observation 
has been assigned to a leaf node.  Each leaf can now be assigned to a particular class or category and a 
corresponding error rate.  The error rate at the leaf node is nothing but the percentage of 
misclassifications at the leaf node.  The error rate for the entire tree is the weighted sum of the error rates 
of all the leaf nodes.  In the case of C5.0 classification trees, information gain is used as the criterion for 
splitting the records at each node.  Entropy is used to measure the information gain.  This method can 
generate trees with variable number of branches at each node.  For example, when a discrete variable is 
selected as an attribute for splitting, there would be one branch for each value of the attribute.      
 
3. RESULTS AND ANALYSIS 
 
As mentioned earlier, a binomial logistic regression equation is fitted with the category of the software 
module (“good” or “bad”) as the dependent variable and all other variables as the independent variables.  
In fact, the dependent variable itself is the odds-ratio of the category of the module.  Only those variables 
which are statistically significant have been included in the equation.  There are 14 variables (factors) that 
are statistically significant.  The coefficients of the equation along with the associated statistical tests are 
presented in Table 1.  The model is applied to training data as well as testing data to measure the 
effectiveness of the regression equation in predicting the category of the module.  These predictions are 
presented as the prediction matrix in Table 2.   
  

Table 1.  Regression coefficients of the Logistic Regression 

Variable B 
Std. 
Error Wald df Sig. Exp(B) 

95% C. I. for Exp(B) 

Lower  Upper  

Intercept 0.090 0.067 1.776 1 0.183    

Decision Points -3.651 0.725 25.342 1 0.000 0.026 0.006 0.108 

Essential Complexity -0.827 0.238 12.035 1 0.001 0.438 0.274 0.698 

Global Data Density 3.388 0.220 236.556 1 0.000 29.602 19.223 45.584 

Halstead Difficulty -0.503 0.062 65.709 1 0.000 0.605 0.536 0.683 

Halstead Effort -2.517 0.366 47.304 1 0.000 0.081 0.039 0.165 

Blank Lines -0.029 0.015 3.635 1 0.057 0.972 0.943 1.001 

Comment Lines 0.938 0.174 28.951 1 0.000 2.555 1.816 3.597 

Maintenance Severity -0.290 0.047 37.334 1 0.000 0.748 0.682 0.821 

Multiple Conditions 4.513 0.998 20.446 1 0.000 91.171 12.893 644.713 

Number of Operators 0.593 0.177 11.259 1 0.001 1.809 1.279 2.557 



Variable B 
Std. 
Error Wald df Sig. Exp(B) 

95% C. I. for Exp(B) 

Lower  Upper  

Number of Operands 1.186 0.454 6.831 1 0.009 3.276 1.345 7.974 

Unique Operands 1.474 0.167 77.745 1 0.000 4.366 3.147 6.059 

Unique Operators -0.351 0.074 22.533 1 0.000 0.704 0.609 0.814 

No. of Parameters -0.385 0.042 82.310 1 0.000 0.681 0.626 0.740 

 
Table 2.  Prediction matrix for the three models 

 

Category 

Prediction 

Training Data Testing Data 

Bad Good Total Bad Good Total 

Logistic Regression 

Actual 

Bad 882 993 1875 249 314 563 

Good 240 3785 4025 78 1259 1337 

Artificial Neural Network 

Bad 1095 780 1875 330 233 563 

Good 308 3717 4025 99 1238 1337 

Classification Tree (C 5.0) 

Bad 1606 269 1875 462 101 563 

Good 1151 2874 4025 419 918 1337 

 
In the next step, an Artificial Neural Network was built using all the independent variables.  The prediction 
matrix with respect to the Artificial Neural Network is also presented in Table 2.  While the neural 
networks do not present any coefficients with respect to the independent variables, the software package 
calculates a sensitivity index which represents the relative importance of various factors.  Table 3 
presents the relative importance (sensitivity index) of the variables used in building the neural networks.  
It can be seen from Table 3 that 9 out of the top 15 variables are the same as the ones that were 
statistically significant in logistic regression. 
 

Table 3. Relative importance of variables based on ANN 

Variable Sensitivity Variable Sensitivity Variable Sensitivity 

Unique Operands 0.7294 Blank Lines 0.3415 No. of Operators 0.2360 

Global Data Density 0.7244 Nodes 0.3157 Number of Operands 0.2214 

Design Complexity 0.7114 lines 0.3007 Edges 0.1984 

Lines of Code 0.7090 Halstead Difficulty 0.2946 Halstead Effort 0.1768 

Executable code 0.7083 Halstead Level 0.2831 Cyclomatic Density 0.1519 

Comment Lines 0.7004 Function Calls 0.2730 Halstead Volume 0.1405 

Condition Modification 0.6946 Total Lines 0.2706 Halstead Error 0.0946 

Multiple Conditions 0.6757 Halstead Length 0.2602 Maintenance Severity 0.0815 

Conditions 0.5426 Decision points 0.2539 Branches 0.0329 

Unique Operators 0.4514 Halstead Content 0.2465   

Essential Complexity 0.3933 No. of Parameters 0.2462   

 
Finally, a third classification technique namely Classification trees was applied to the same dataset.  The 
prediction matrix of the classification tree is also presented in Table 2.  The Classification Tree had 17 
levels of which the top six are presented in Figure 1.  Twelve variables that appear in the top six levels of 
the tree are same as those which were statistically significant in the logistic regression model.  In other 



words, all the three techniques used for prediction of the software quality had a large number of common 
variables influencing the prediction/classification of the software module.  Thus, these are the variables 
that will have a significant impact on the software quality.  The importance of these variables in software 
quality is reiterated by each of the techniques in the sense that there are a number of common variables 
that are significant in all the three techniques.  
 

 
Figure 1. Classification Tree for predicitng the software quality 

 
The results presented in Table 2 show that the prediction accuracies for both training data and the testing 
data are very similar indicating that the three models are stable and robust.  Thus, these models could be 
applied for predicting the category of the modules based on different variables.  There are some 
differences in the prediction accuracies of the three techniques used.  Logistic regression is able to 
provide the best prediction with respect to the “good” modules while classification trees provide the best 
prediction for “bad” modules.  The importance of each of the factors can be gauged based on the 
common occurrences of the variables across the three techniques used.  Nine factors are identified as 
the critical factors influencing the software quality through this process.  These are number of unique 
operands, number of unique operators, multiple conditions, global data density, number of comment lines, 
number of blank lines, Halstead difficulty, essential complexity and number of lines of code.  Since these 
are identified as the critical factors, the software quality can be improved by paying more attention to 
these variables while developing the software modules. 
 
4. SUMMARY AND CONCLUSIONS 
As software is becoming an integral part of our lives, software quality is becoming more critical.  While 
there have been a number of research studies dealing with software quality and its measurement, not 



enough research had gone into identifying various factors that influence software quality.  One of the 
primary reasons for this is that the quality is a nominal or ordinal concept which does not lend itself to 
techniques such as regression analysis.  On the other hand, there are other techniques such as Artificial 
Neural Networks, Classification Trees and Logistic Regression which are routinely used for prediction of 
variables that are nominal.  This paper has applied these three techniques to predict the software quality 
using large number of variables.  By identifying the variables that are significant across all these three 
techniques, the study is able to isolate those variables which have a significant impact on the software 
quality.  In other words, the software companies need to be more vigilant with respect to these variables 
as compared to the others.  By paying more attention to these variables vis-à-vis other variables, the 
software companies will be in a position to improve the quality.  It may be necessary for these companies 
to test the methodology and the results for different types of software modules specific to the company.  
Since the techniques used in this methodology are predictive in nature, a prediction about the possible 
outcome of the software module (either “good” or “bad”) along with the associated probability can be 
made using the independent variables.  Additional care can be taken in the development efforts based on 
this prediction. This is an additional benefit that arises out of this methodology. 
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