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Assessing Sexual Attitudes and Behaviors of Young
Women: A Joint Model with Nonlinear Time Effects,

Time Varying Covariates, and Dropouts
Pulak GHOSH and Wanzhu TU

Understanding human sexual behaviors is essential for the effective prevention of sexually transmitted infections (STI). Analysis of lon-

gitudinally measured sexual behavioral data, however, is often complicated by zero-inflation of event counts, nonlinear time trend, time-

varying covariates, and informative dropouts. Ignoring these complicating factors could undermine the validity of the study findings. In this

article, we put forth a unified joint modeling structure that accommodates these features of the data. Specifically, we propose a pair of

simultaneous models for the zero-inflated event counts: Each of these models contains an auto-regressive structure for the accommodation

of the effect of recent event history, and a nonparametric component for the modeling of nonlinear time effect. Informative dropout and time

varying covariates are modeled explicitly in the process. Model fitting and parameter estimation are carried out in a Bayesian paradigm by

the use of a Markov chain Monte Carlo (MCMC) method. Analytical results showed that adolescent sexual behaviors tended to evolve

nonlinearly over time, and they were strongly influenced by the day-to-day variations in mood and sexual interests. These findings suggest

that adolescent sex is, to a large extent, driven by intrinsic factors rather than being compelled by circumstances, thus highlighting the need

of education on self-protective measures against infection risks.

KEY WORDS: Joint modeling; Markov Chain Monte Carlo; Mood; Sexually transmitted infections; Zero-inflated Poisson

1. INTRODUCTION

Human sexual contacts are the primary pathway for sexually
transmitted pathogens such as Chlamydia trachomatis, Neisseria
gonorrhoeae, and Trichomonas vaginalis. Despite the existence
of efficacious antimicrobial agents against the organisms, these
diseases remain prevalent in the U.S. population. The burden of
the diseases is disproportional on adolescents and young adults.
For example, although young people aged 15–24 account for
only a quarter of the sexually active population, they represent
nearly half of new infections (Weinstock, Berman, and Cates
2004). Since the diseases are transmitted through behavior, the
development of effective prevention strategies requires an im-
proved understanding of human sexual behaviors, particular
those of the young. Because adolescent sexual behaviors tend to
change with time and experience, and are likely influenced by
proximal phenomena such as mood and sexual interest, it is
essential to model behavioral events longitudinally with full
consideration of the contextual information. However, the anal-
ysis of longitudinal behavioral data collected from observational
studies is often complicated by potentially nonlinear time effects,
large between-subject variability, time-varying covariates, and
informative dropouts. This article presents a unified analytical
framework for the modeling of longitudinally collected counts
of human sexual events, with explicit accommodation of these
various complications.

1.1 An Epidemiological Study of Sexual Behaviors of
Young Women

Young women were recruited for participation in a behav-
ioral epidemiological study from three urban primary care

clinics. The overall objective of the study was to examine the
behavioral factors related to sexually transmitted infections
(STIs). Eligibility criteria included that the young women be
between 14 and 17 years of age, be able to understand English,
not have any serious psychiatric disturbances or mental hand-
icaps, and attend one of the three recruiting clinics. These
clinics serve a predominantly urban and lower income popu-
lation. Individuals who did not plan to continue residence in the
area for the next 3 months or who were pregnant were excluded
from the study. At the participating sites, all women who met
the enrollment criteria, regardless of prior sexual experience,
were identified by clinical schedule, and those who agreed to
participate were enrolled at the current or subsequent clinical
visit. Informed consent and parental permission were obtained
at the time of enrollment.

All subjects had quarterly clinic visits for the duration of the
study period. In addition to the quarterly clinic visits, the study
subjects also completed daily behavioral diaries, which pro-
vided detailed records of the subject’s sexual behaviors in their
original time sequence. Specifically, the diary was a structured
minisurvey in which the subject reported sexual intercourse,
condom protection, STI symptoms, and daily mood and sexual
interest. Since coitus is relatively infrequent in adolescents and
may exhibit certain day-of-the-week patterns, we summarized
the daily events into weekly event counts and focused on the
description of weekly rate of sexual intercourse.

The original study is designed to have a total length of
follow-up of 27 months, and it is currently ongoing. In this
analysis, we used a subset of 282 subjects who had been en-
rolled into the study for at least 6 months (24 weeks), including
those who had dropped out of the study before the completion
of the 6-month interview; recent enrollees who had entered the
study in the last 5 weeks were not considered in the current
analysis. The subject characteristics that we considered in this
analysis included age, lifetime number of partners, and history
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of STI, all measured at enrollment. The STI history is thought
to be a marker of the more risky sexual behaviors in young
women, and the lifetime number of partners to be a marker of a
subject’s sexual experience and partner availability.

The focus of this analysis was to examine whether positive
mood and sexual interest were associated with the level of
sexual activity in adolescent women. In this study, positive
mood was assessed via diary by asking the subject to indicate
percent of time in the day that she felt ‘‘happy,’’ ‘‘cheerful,’’
and ‘‘friendly.’’ The responses were on a Likert scale ranging
from ‘‘not at all’’ (1 point), ‘‘some of it’’ (2 points), ‘‘about
half’’ (3 points), ‘‘most of it’’ (4 points), or ‘‘all day’’ (5 points).
The responses to these three items produced a mood score
between 3 and 15 points. The purpose of having these corre-
lated items in the scale is to achieve a better representation of
the unobserved underlying construct of positive mood. Sim-
ilarly, daily ‘‘sexual interest’’ was measured by one item in
the diary on the same five-point Likert scale. In the present
research, we calculated and used the average weekly mood and
sexual interest scores in the analysis.

1.2 Analytical Issues of Longitudinally Measured
Behavioral Data

The primary response variable of interest of this analysis was
the weekly number of coital events. The weekly coital fre-
quency counts of the study cohort are depicted inF1 Figure 1.
These counts ranged from 0 to 8, with more than half of the
observations being zero. When the number of zeros in the
dataset exceeds the probability mass that the Poisson dis-
tribution allocates to the point of zero, the data are said to be
zero-inflated. In the presence of zero inflation, modeling the
event count via Poisson regression is no longer appropriate;
instead, zero-inflated Poisson (ZIP) regression models are
often used in place of the classical Poisson regression models
(Lambert 1992). Since Lambert’s seminal work on ZIP re-
gression models, a variety of applied ZIP regression models
have been successfully used in several important clinical
applications (Böhning, Dietz, Schlattmann, Mendonca, and
Kirchner 1999; Yau and Lee 2001; Cheung 2002; Lu, Lin, and
Shih 2004; Ghosh, Mukhopadhyay, and Liu 2006). However, a

number of methodological issues have complicated the anal-
ysis of the study data.

1. Repeatedly measured event counts contributed by the
same subject tend to be correlated, and the current event count is
likely to be associated with past event counts. Hall and Zhang
(2004) discussed model-fitting procedures for marginal ZIP
regression models for clustered count data. Min and Agresti
(2005) and Hall and Wang (2005) considered mixed-effects ZIP
regression models for repeatedly measured or cluster correlated
data. However, in this application, since the levels of sexual
activities vary significantly from person to person, and the event
count of the current week is likely to depend on those of the
previous weeks, a more natural approach is to develop an
autoregressive model in which the outcome at current time point
depends on its value at previous time points (Diggle et al. 2002,
Chap. 10). Previous investigation has indicated the validity of
this structure in the context of sexual behavioral research
(Fortenberry et al. 2005).

2. Human behaviors often change gradually over time. Such
time effects are typically unobservable, but ignoring them could
have serious consequences. Additionally, repeated behavioral
assessments themselves could have a subtle but nonignorable
impact on the behavior being studied. One of the concerns here
is that repeated questioning about sexual activities could ‘‘acti-
vate’’ the subject, thus gradually influencing her behavior.
Methodologically, it is often impossible to independently verify
the existence of such activation effects because of the lack of
appropriate control subjects who are not subjected to these
assessments. The dilemma is that, had there been such a control
group, it would produce no behavioral data for the comparison
due to the lack of assessments. However, if the data collection
instruments have an activating effect, the effect is likely to
express itself over time. For this reason, it becomes critically
important for us to account for the time effect explicitly in the
model to ensure the validity of inference on the important
independent variables. This said, we note two difficulties with
the modeling of the time effect. First, there is no guarantee that
the time effect is linear; indeed, since the true functional form
of time covariate is unknown, the assumption of linear time
effect may not be always justifiable. Second, the time effect
could differ by individual subjects. Examining the event pro-
files of 20 randomly chosen subjects F2(Figure 2), it becomes
clear that they do not correspond to a particular parametric
form, and between-subject variation is quite evident. These
considerations have led us to consider a semiparametric
approach for the cohort time effect using spline models. We use
this approach to explore the features of the population and
individual curves within the mixed model framework.

3. The observation of longitudinal cohorts is often accom-
panied by dropouts. The probability of a subject’s dropping out
of a study may be related to the subject’s self-reported event
rate. In the context of adolescent sexual behaviors, some have
suspected that dropout is often a marker of higher risk behavior.
A missing data mechanism where a subject’s probability of
dropping out depends on the rate of the Poisson process was
referred to as ‘‘informative censoring’’ by Wu and Carroll
(1988) and ‘‘informative missingness’’ by Follmann and Wu
(1995). We use the term ‘‘informative dropout’’ to describe this

Figure 1. Weekly coital frequency counts of 282 young women over
a 24-week period.
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situation. In this application, we use a logistic model to depict
the drop-out probability as a function of the subject’s baseline
characteristics, her observed event counts before the dropout
time, and a random subject effect. In this example, we had
about 20% of subjects that had dropped out of the study during
the course of follow-up.

4. Because mood and sexual interest are collected over time
together with coital counts, they can be viewed not only as time
varying covariates, but also as realizations of some underlying
psychological processes (Fortenberry et al. 2006). Therefore,
directly modeling them may enhance our understanding of
these effects. For example, an explicit covariate model will
allow us to assess the strength of correlations of the mood and
sexual interest measures within the subject over time. In
addition, these time-varying covariates are not observed at the
time of dropout, leading to missingness in the covariates. Roy
and Lin (2005) have shown that ignoring this missingness in
the covariates will yield inconsistent estimates of the model
parameters. Thus, we directly model the time-varying cova-
riates using a mixed model framework.

It should also be noted that, in behavioral data, these com-
plications rarely appear in isolation. Therefore, in the present
article, we propose a joint modeling approach for the sexual
activity data. Specifically, the behavioral events are modeled
by an autoregressive ZIP regression structure with a semi-
parametric component for the accommodation of a potentially

nonlinear time effect. The ZIP regression models share the
subject-specific random effect with the logistic model for
dropout. Time varying covariates such as mood and sexual
interest are modeled via linear mixed model with autore-
gressive structures. The model is thus semiparametric in nature
as the time effect is modeled nonlinearly. Within this unified
modeling framework, a Bayesian approach was developed for
parameter estimation. As an applied statistical method, this
work is in contrast to the previous approaches by providing a
joint modeling structure for the depiction of behavioral events
in a longitudinal study. This research has incorporated some of
the more recent modeling techniques in a ZIP regression setup:
(1) it simultaneously models the probability weights of the
mixture distributions; (2) it incorporates semiparametric
functions for the time effects; (3) it explicitly accounts for
informative dropouts; and (4) it accommodates the missing
covariates. Since these characteristics are not uncommon in
longitudinal studies of behavioral outcomes, the method is
potentially useful for a wider class of applications.

2. MODEL SPECIFICATION

2.1 ZIP Model

Let Yij be the count of behavioral events reported by the ith
subject in the jth time unit, i ¼ 1, 2, . . ., m; j ¼ 1, 2, . . ., n,
where m represents the number of subjects in the study, and n is

Figure 2. Sample longitudinal profiles of weekly coital frequency for 20 subjects.
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the designed number of time units in the follow-up period. In
the context of this research, Yij is the number of sexual episodes
reported by the ith subject in the jth week. Depending on the
subject’s current state of sexual activeness, a large number of
zeros may be observed in Y. Following Lambert (1992), Hall
(2000), Dagne (2004), and Ghosh, Mukhopadhyay, and Lu
(2006), we further assume that for each observed event count,
Yij, there is an unobserved random variable for the state of
sexual activeness, Uij, where P(Uij ¼ 0) ¼ pij if Yij comes from
the degenerate distribution, and P(Uij ¼ 1) ¼ 1 � pij if Yij ;

Poisson lij:

Yij ¼
0 with probability pij

PoissonðlijÞ; with probability ð1� pijÞ;

�
ð1Þ

where Poisson(lij) is defined by the density function
PðYij ¼ yijÞ ¼ expð�lijÞl

yij

ij =yij!: It should be noted that both
the degenerate distribution and the Poisson process can pro-
duce zero observations. Such a formulation is often referred to
as the ZIP distribution. It then follows that

PrðYij ¼ 0Þ ¼ pij þ ð1� pijÞexpð�lijÞ ð2Þ

PrðYij ¼ yijÞ ¼ ð1� pijÞ
expð�lijÞl

yij

ij

yij!
; yij ¼ 1; 2; . . . : ð3Þ

In this research, one could conceptualize the degenerate
distribution as representing a ‘‘sexually inactive’’ state with
probability pij, while the Poisson process represents a ‘‘sex-
ually active’’ state, with lij being the mean weekly number of
sexual episodes.

Because the weekly event counts are simultaneously influ-
enced by the state that the subject is in during the week and the
weekly event rate given she is in an active state, we consider
simultaneous modeling of both lij and pij.

2.2 Simultaneous Models of Behavioral Event Counts

We assume the following logistic and log-linear regression
models for pij and lij

logitð1� pijÞ ¼ ST
i bp

1 þ TT
ijb

p
2 þ

XQ

q¼1

b
p
3qYi;j�q þ ZT

ij2bi1

þ f pðtijÞ þ hp
i ðtijÞ;

ð4Þ

logðlijÞ ¼ ST
i bl

1 þ TT
ijb

l
2 þ

XQ

q¼1

bl
3qYi;j�q þ ZT

ij1bi2

þ f lðtijÞ þ hl
i ðtijÞ:

ð5Þ

The logistic model in (4) explicitly depicts the probability
that the observation is from the degenerate distribution; and the
loglinear model in (5) quantifies the ‘‘intensity’’ of the Poisson
process. Herein, Si denotes the baseline characteristics and Tij

is the time-varying covariate vector for the ith subject at time
j. Although we assumed the same set of covariates for the pij and
lij in the preceding formulation, the models can easily be

modified to accommodate different covariates in the two pro-
cesses. The parameters, bp

1;b
p
2;b

l
1 ; and bl

2 are vectors of
regression coefficients for the fixed effects. Note that, in (4) and
(5), the subject’s response at time j, Yij, depends on the subject’s
past events through embedded qth-order autoregressive struc-
tures. Parameters bp

3 ¼ ðb
p
31; . . . ;bp

3QÞ and bl
3 ¼ ðbl

31; . . . ;bl
3QÞ

are associated with the autoregressive process. In this appli-
cation, the reported number of sexual episodes may vary from
week to week in an unknown fashion. Thus, the time effects
on pij and lij are modeled by unspecified nonparametric
functions f p(t) and f l(t), respectively. These unspecified
smooth functions reflect the nonlinear effect of time. However,
these functions represent only the population averages; indi-
vidual trajectories may still vary from subject to subject, and
the individual pattern may not follow the pattern of the pop-
ulation curve. These subject effects may also contribute to the
correlation of the longitudinal measurements within subjects.
Therefore, we add a subject-specific nonparametric function
hi(�), which represents the subject’s deviation from the group
curves. The population curve f (t) is important because it
describes the overall cohort time effect on the parameter of
interest. At the same time, individual curves hi(t) are intro-
duced to represent subject-specific variations around the pop-
ulation time effect. Together, the population average and
individual specific curves serve to improve the fitness of the
model to inform the investigators about the nature of the cohort
time effect. To accommodate any extra within-subject cor-
relation due to the large within-subject variability in the cohort,
we introduce additional random effects (bi1, bi2) into the
models.

He, Fung, and Zhu (2005) and Zhao, Staudenmayer, Coull,
and Wand (2006) discussed the incorporation of semipar-
ametric population curves in generalized linear models. This
research further extends those methods by embedding both
population average and subject-specific splines in a ZIP re-
gression model. In doing so, the proposed semiparametric ZIP
model offers a greater flexibility in the modeling of zero-
inflated event counts. The model reduces to a parametric ZIP
model when fp(t), fl(t), hp

i ðtÞ; and hp
i ðtÞ are constants. Following

(Ruppert et al. 2003), we assume that the spline functions take
the following general forms of a piecewise polynomial of
degree t.

f pðtÞ ¼ n
p
1t þ n

p
2t2 þ � � � þ np

t tt þ
XD1

d¼1

up
d1ðt � k

p
d1Þ

t
þ;

f lðtÞ ¼ nl
1 t þ nl

2 t2 þ � � � þ nl
t tt þ

XD1

d¼1

ul
d1ðt � kl

d1Þ
t
þ;

hp
i ðtÞ ¼ r

p
1it þ r

p
2it

2 þ � � � þ r
p
tit

t þ
XD2

d¼1

up
id2ðt � k

p
d2Þ

t
þ; and

hl
i ðtÞ ¼ rl

1it þ rl
2it

2 þ � � � þ rl
tit

t þ
XD2

d¼1

ul
id2ðt � kl

d2Þ
t
þ;

where Xþ ¼ x if x > 0, and 0 otherwise, and k
p
d1; k

l
d1; k

p
d2; and

kl
d2 are the known knot points. The choice of the knots will be

described in the Section 4. Note that, in the population spline,
we do not have any intercept to avoid unidentifiability. We
assume up

d1; Nð0;s2
upÞ; ul

d1; Nð0;s2
ulÞ; up

id2; Nð0;s2
1pÞ; and
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ul
id2; Nð0;s2

1lÞ: The preceding spline model of order t rep-
resents adequate fits for most situations. However, the number
of parameters may not be practical for smaller datasets. In
those situations, simpler spline models such as linear splines
may be used, or subject specific splines may be dropped.
Typically, linear (t ¼ 1), quadratic (t ¼ 2), or cubic (t ¼ 3)
splines are common choices, in practice, because they ensure a
certain degree of smoothness in the fitted curve. The preceding
spline models can be embedded in the mixed model framework
for a general structure as follows:

Let X1ij ¼ (t, . . ., tt)T, Wp
ij1 ¼ ½ðt � kP

11Þ
t
þ; . . . ; ðt � kP

D11Þþ
t�T ;bp

4¼ ðn
p
1;. . . ; np

tÞ
T ; up

1 ¼ ðu
p
11; . . . ; up

D11Þ
T ; rp

i ¼ ðr
p
1i; . . . ;

r
p
tiÞ

T ; up
i2 ¼ ðu

p
i12; . . . ; up

iD22Þ
T : In a similar way, we define

Wl
ij2; bl

4 ; ul
1 ; rl

i ; ul
i2: Then,

f pðtÞ þ hp
i ðtÞ ¼ XT

1ijb
p
4 þWpT

ij1up
1 þ XT

1ijr
p
i þ ZpT

ij2up
i2

¼ XT
1ijb

p
4 þWpT

ij1up
1 þ VpT

ij wp
i ;

ð6Þ

f lðtÞ þ hl
i ðtÞ ¼ XT

1ijb
l
4 þWlT

ij2ul
1 þ XT

1ijr
l
i þ VlT

ij2ul
i2

¼ XlT

1ijb
l
4 þWlT

ij2ul
1 þ VlT

ij wl
i ; ð7Þ

where Vp
ij ¼ ðXT

1ij; Z
pT

ij2Þ;w
p
i ¼ ðr

p
i ; u

p
i2Þ

T : Similarly, Vl
ij;w

l
i is

defined. Also, Eðup
1Þ ¼ 0; covðup

1Þ ¼ s2
upID1

;Eðwp
i Þ ¼ 0,

cov ðwp
i Þ ¼ diagðSp

r;s
2
1pID1

Þ;Eðul
1Þ ¼ 0; covðul

1Þ ¼ s2
ulID1

;
Eðwl

i Þ ¼ 0 and cov ðwl
i Þ ¼ diagðSl

r ;s
2
1lID1

Þ:
The preceding splines are partitioned into a fixed linear

component plus a random component, with zero expectation,
representing smooth deviations about the linear trend.

Letting Xij ¼ ðST
i ;T

T
ij ; Yi;j�1; . . . ; Yi;j�Q;X

T
1ijÞ

T and bp¼ ðbp
1;

bp
2;b

p
3;b

p
4Þ

T ; (bl defined similarly), and plugging expressions
(6) and (7) into Equations (4) and (5), we obtain

logitð1� pijÞ ¼ ST
i bp

1 þ TT
ijb

p
2 þ

XQ

q¼1

b
p
3qYi;j�q þ XpT

1ij b
p
4

þWpT

ij1up
1 þ VpT

ij wp
i þ ZT

ij1bi1;

¼ XT
ijb

p þWpT

ij1up
1 þ VpT

ij wp
i þ ZT

ij1bi1; ð8Þ

logðlijÞ ¼ ST
i bl

1 þ TT
ijb

l
2 þ

XQ

q¼1

bl
3qYi;j�q þ XlT

1ij bl
4

þWlT

ij2ul
1 þ VlT

ij wl
i þ ZT

ij2bi2

¼ XT
ijb

l þWlT

ij2ul
1 þ VlT

ij wl
i þ ZT

ij2bi2:

ð9Þ

2.3 Informative Dropout in Cohort Studies

Dropouts are not uncommon in observational studies of large
cohorts. Here, we define the dropout as someone who did not
come to a scheduled visit and had not come back by the end of
the study. Since the measurements are missing after the last
kept visit, analysis of the incomplete data poses additional
challenges. If the dropouts are due to a mechanism that is
unrelated to the investigation, i.e., the unobserved behaviors are
missing completely at random, these dropouts can be ignored.

However, this is unlikely to be the case for most of the longi-
tudinal studies of human behavior. In adolescent health studies,
there are suspicions that the dropouts may be associated with
certain traits that can be characterized as lack of discipline.
These traits not only influence the dropout process, but also
correlate with the sexual behaviors themselves, thus giving us
an incentive for a joint modeling of the outcomes and dropout
process.

Specifically, for each Yij, we define a missing indicator
variable Rij, such that Rij ¼ 1 if Yij was missing, and 0 other-
wise. Thus, Ri ¼ (Ri1, . . ., Rin)T is a vector of missing response
indicators for individual i. Then, a simple model could be
constructed to describe the nonignorable missing response:

Rij; BernoulliðhijÞ;where hij ¼ PrðRij ¼ 1jYij;Yiðj�1ÞÞ ð10Þ

gðhijÞ ¼ LT
ijj þ c1Yij þ

XQ1

s¼2

csYi;jþ1�s þ
XK

k¼1

zkTijk þ ZT
ij3bi3

ð11Þ
where Yi,(j�1) denotes a subset of the history of the data, e.g.,
it can be the previous responses (yi,j�1) or previous time-
varying covariates Ti,j–1,k. Note that c1 6¼ 0 gives nonignorable
missingness. Here, g(�) is a link function; we let g(x)¼ logit(x).
In the preceding model, Lij is the vector of baseline covariates
and bi3 is the vector of random subject effects corresponding to
the dropout model. The Tijk is the kth time-varying covariate.
The unknown parameters are ðj;c1; . . . ;cQ1

; z1; . . . ; zKÞ:
The baseline covariates and the time-varying covariates may
be the same as in the response model. The nonignorable
dropout mechanism is modeled by the dependence of the
dropout probability on the unobserved outcome yij at the time
of dropout and on the outcome before dropping out. As for the
random subject effects vector bi¼ (bi1, bi2, bi3)T, we assume bi

; N(0, Db). Thus, the correlated random effect allows for the
association between the dropout and the outcome.

2.4 Modeling Time-varying Covariates

In the preceding model, we have covariates that are also
measured over time along with the response variable. It is usual
that some of the covariates will be unobserved because of
dropout in the data. Due to the presence of this missingness in
the time-varying covariates, we need to model the covariate
process (Roy and Lin 2005). We develop a multivariate linear
mixed model (Shah et al. 1997) to describe the covariate process.

Let Tijk be the kth covariate for the ith subject measured at
time j. We assume the following linear mixed model for the
different time-varying covariates:

Tijk ¼ AT
ijkg0k þ g1kTi;j�1;k þ BT

ijkdik þ eijk; ð12Þ
where Aijk is the design matrix for the fixed effects. The model
assumes that the kth time-varying covariate at the current time
depends on its value at the previous time point, dik is the ran-
dom subject effect for the ith subject in the kth marker, and eijk

is the measurement error.
Let Tij¼ðTijk; . . . ; TijKÞT ; eij ¼ ðeij1; . . . ; eijkÞ; g0 ¼ ðg01;

. . . ; g0KÞ;g1¼ ðg11; . . . ; g1KÞ; di ¼ ðdi1; di2; . . . ; diKÞT : Then,
in matrix notation, we have
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Tij ¼ AT
ijg0 þ g1Ti;j�1 þ BT

ijdi þ eij ð13Þ
where eij ; Nð0;S ¼ diagfs2

kgÞ; di ; Nð0;SdÞ; Sd being the
variance-covariance matrix for the random effects di. We
assume independence between the random effects and error
distribution.

The Markovian structure of the model allows for a longi-
tudinal correlation structure for the same covariates over
time.

3. BAYESIAN INFERENCE: LIKELIHOOD, PRIORS,
AND POSTERIOR

3.1 The Likelihood Function

Let Yobs;i ¼ ðYi1; . . . ; Yini
ÞT and Tobs;i ¼ ðTi1; . . . ; Tini

ÞT
denote the observed values of Yi and Ti, respectively. We also
assume that, for subjects who dropped out from the study,
Ydrop;i ¼ ðYi;niþ1; . . . ; YinÞT and Tdrop;i¼ ðTi;niþ1; . . . ; TinÞT rep-
resent the missing response and covariates, respectively. Then,
Yi ¼ ðYT

obs;i;Y
T
drop;iÞ

T and Ti ¼ ðTT
obs;i;T

T
drop;iÞ

T : We define Si

and Zij similarly. Further, we write b ¼ ðbl
1 ;b

l
2 ;b

l
3 ;b

p
1;b

p
2;

bp
3Þ

T ; c ¼ ðc1; . . . ;cQ1
ÞT ; and z ¼ ðz1; . . . ; zKÞT :

Let V ¼ (V1, V2, V3, V4, V5) be the parameter space.
Here, V1 ¼ ðb;s2

up;s
2
ul;s

2
1p;s

2
1lÞ is the parameter vector

for the joint model, V2 ¼ (j, c, z)T) is the parameter vector
for the dropout model, V3 ¼ ðg ¼ ðg0;g1ÞT ;s2

1; . . . ;s2
KÞ

is the parameter vector for the time-varying covariate mod-
el, V4( ¼ Db) is the parameter of the random effect bi,
and V5(¼ Sd) is the parameter of the random subject effects
Wi.

Then, under the assumption of nonignorable dropout (c1 6¼
0), the joint likelihood can be written as

LðYobs;i;Tobs;i;RijSi;Ti1; bi; di; VÞ}
LðYijYi1; Si;Ti; bi; V1ÞLðTijTi1; Si; di; V2Þ
3 LðRijYi; Tobs;i; Sobs;i; bi; V3ÞLðbi; V4ÞLðdi; V5Þ;

ð14Þ

where

LðYijYi1; Si;Ti; bi; V1Þ ¼
Yni

j¼2

pij þ ð1� pijÞe�lij
� �I½Yij¼0�

3
ð1� pijÞe�lij l

Yij

ij

Yij

" #1�I½Yij¼0�

; ð15Þ

with pij and lij given in Equations (4) and (5), and

LðTijTi1; Si; di; V2Þ}
1

jSjni=2

3 exp

(
� 1

2

Xni

j¼2

ðTij � mTij
ÞTS

�1
ðTij � mTij

Þ
)
;

ð16Þ

where mTij
¼ AT

ijg0 þ g1Ti;j�1 þ BT
ijdi;

LðRijYi;Tobs;i; Sobs;i; V3; biÞ

¼
Yni

j¼2

fPrðrij ¼ 1jYi;Tobs;i; Sobs;i; V3; biÞgrij

3 f1� Prðrij ¼ 1jYi;Tobs;i; Sobs;i; V3; biÞg1�rij ;

ð17Þ

and L(bi; V4) and L(di; V5) denote the multivariate normal
distributions with zero mean vector and variance-covariance
matrices Db and Sd, respectively.

3.2 Prior Distribution

To complete Bayesian specification of the model, we
must assign priors to the unknown parameters. Since we
have no prior information from historical data or from
experiment, we take the usual route and assign conjugate
priors to the parameters. We assume elements of the
V ¼ ðb; j;c; z;g;Db;Sd;s

2
up;s

2
ul;s

2
1p;s

2
2p;s

2
1l;s

2
2l;s

2
1; . . . ;

s2
KÞ are independently distributed. For each fixed effect, we

assume a normal density prior; for the variance parameter, we
assume an inverse-Gamma (IG) prior; while for the variance-
covariance matrix, we assume an inverse Wishart prior. An IG
prior with shape parameter a and scale parameter b is denoted
by x ; IG(a, b) and is given by f ðxÞ}x�aexpð�b=2x2Þ:
Additionally, we assume a Wishart distribution for the inverse of
a variance-covariance matrix, where a Wq(., S) is a q-dimen-
sional Wishart distribution with . degrees of freedom and mean
.S�1. For our analysis, diffuse priors can be chosen so that the
analysis is dominated by the data likelihood. Specifically, to
represent the vague prior knowledge, we propose to set the
degrees of freedom for the Wishart distribution to be the min-
imum possible, viz. the rank of the variance-covariance matrix.

We specify the following priors on the model parameters for
the fixed effects: p(b) ; N(mb,

P
b), p(j) ; N(mj, Sj), p(c)

; N(mc,
P

c), p(z) ; N(mz,
P

z), and p(g) ; N(mg,
P

g).
For the variance parameter, we assume an IG prior as

follows:pðs2
up ; IGðaup; bupÞ;pðs2

ulÞ; IGðaul; bulÞ;pðs2
1pÞ;

IGða1p; b1pÞ;pðs2
1lÞ; IGða1l; b1lÞ; and pðs2

kÞ; IGðck; dkÞ;
k ¼ 1; 2; . . . ;K:

Finally, the variance-covariance parameters of the random
subject effect take the following forms: pðD�1

b Þ; Wishartð.b;
S.Þ; and pðS�1

d Þ; Wishartð.d; SdÞ:

3.3 Posterior Distribution and Inference

The joint posterior distribution of the parameters of the
models conditional on the data are obtained by combining
the likelihood in (14) and the prior densities using Bayes’
theorem:

f ðV; b; d; ujyÞ}
Ym
i¼1

Lðyobs;i;Tobs;i;RijSi; Ti1; bi; di; VÞ
� �

3 pðbÞf ðs2
upÞpðs2

ulÞpðs2
1pÞpðs2

1lÞpðjÞpðcÞ

3 pðzÞpðgÞpðD�1
b ÞpðS

�1
d Þ
YK
k¼1

f ðs2
kÞ:

The posterior distributions are analytically intractable.
However, models described previously can be fitted using the
Markov chain Monte Carlo (MCMC) methods such as the
Gibbs sampler (Gelfand and Smith 1990). Since the full con-
ditional distributions are not standard, a straightforward
implementation of the Gibbs sampler using standard sampling
techniques may not be possible. However, sampling methods
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can be performed using adaptive rejection sampling (ARS;
Gilks and Wild 1992). Recently, Ghosh, Mukhopadhyay, and
Lu (2006) have advocated the use of ARS for a ZIP model. In
this research, we follow their procedure, which first uses a data
augmentation step to sample the values of the latent variables
(sexual activities) based on the current value of the parameters,
and then samples the parameters using the ARS method given
the latent variables. Samples were directly obtained from the
joint posterior distribution of the parameters as well as the
latent variables. Implementation of this method is relatively
easy in the publicly available software WinBUGS (Spiegelhalter,
Thomas, Best, and Lunn 2005). The samples from the posterior
obtained from the MCMC will allow us to achieve summary
measures of the parameter estimates and to obtain credible
intervals (CIs) of the parameters of interest. See Section 4.2 for
more computational details of the data analysis.

4. DATA ANALYSIS

4.1 Model Specification

Using the proposed model, we analyzed the data collected
from the behavioral epidemiological study. The dataset con-
tained weekly coital frequency counts (Yij) of 282 young
women measured over a period of 24 weeks, i ¼ 1, 2, . . ., 282;
j ¼ 1, 2, . . ., 24. The vector of baseline characteristics, Si ¼
(AGEi, STDi, PTRi)

T, where AGEi, STDi, and PTRi were,
respectively, the ith subject’s age, STD history, and lifetime
number of sexual partners, is measured at the time of enroll-
ment. The vector of time-varying covariates had two elements,
Tij ¼ (MOODij, SIij)

T, where MOODij and SIij were, respec-
tively, the weekly average mood and sexual interest scores
reported by the ith subject in the jth week. Under a first-order
autoregressive structure (Q ¼ 1), we had the following semi-
parametric autoregressive ZIP models:

logitð1� pijÞ ¼ b
p
11 þ b

p
12AGEi þ b

p
13STDi þ b

p
14PTRi

þ b
p
21MOODij þ b

p
22SIij þ b

p
31Yi;j�1

þ bi1 þ f pðtijÞ þ hp
i ðtijÞ;

logðlijÞ ¼ bl
11 þ bl

12AGEi þ bl
13STDi þ bl

14PTRi

þ bl
21MOODij þ bl

22SIij þ bl
31Yi;j�1

þ bi2 þ f lðtijÞ þ hl
i ðtijÞ:

Please note that for the convenience of model interpretation,
we chose to model the probability that the ith subject was in a
sexually active state (1 – pij) at jth visit in the logistic model.

For the fitting of the models, there is no clear rule on how
many knot points to include or where to locate them in the
spline functions. More knots are needed in regions where the
function is changing rapidly (Ruppert et al. 2003). Sometimes
knowledge of subject matter may be relevant in placing knots
where a change in the shape of the curve is expected. Using too
few knots or poorly sited knots means the approximation to the
curve will be degraded. By contrast, a spline using too many
knots will be imprecise. Since the subjects were assessed
regularly with equally spaced intervals in this study, we
selected the knots from the existing values that were equally
spaced within the range [min(x), max(x)]. Thus, the six knots
were placed at weeks 5, 8, 11, 14, 17, and 20.

A model for dropout was assumed in case the dropouts were
informative. Preliminary data analysis suggested that the
dropout might depend on the current or previous coital fre-
quency counts, as well as on some of the baseline covariates.
So, we considered the following simple model:

logitðhijÞ ¼ j1 þ j2AGEi þ j3STDi þ c1Yij

þ c2Yi;j�1 þ bi3; ð18Þ
where bi3 was the random subject effect. As detailed in Section
4.3, although the dropout probability was modeled as a func-
tion of the subject’s enrollment age, STD history, and the
weekly coital frequency counts prior to the dropout time, we
chose the preceding model for dropout based on a set of model
selection criteria described in Section 4.4.

Similarly, the time-varying covariates mood and sexual
interest were modeled as follows:

MOODij ¼ g01 þ g11MOODi;j�1 þWi1 þWi2tij þ eij1;

SIij ¼ g02 þ g12SIi;j�1 þWi3 þWi4tij þ eij2:

Again, the autoregressive structures embedded in the time-
varying covariate models allowed us to examine the strength of
the autocorrelation within the covariates. This was not only of
scientific interest to the investigation, but also helpful for the
exploration of the modeling structure. For example, a very
strong autocorrelation in mood would not only counter the
speculation of mood swing in adolescents, but also render it
unnecessary to collect mood measure so frequently, or to treat
it as a time-varying variable.

Since the study was still ongoing and data were still being
collected at the time of this report, the currently available
dataset was not large enough to be divided for the purpose of
prior elicitation. Prior information based on expert opinion,
even if available, is nonetheless user specific. Hence, in this
analysis, we chose our priors to be proper but weakly infor-
mative. Specifically, we take a N(0, 50) prior for each of the
regression parameters, and for each variance parameter ( ¼ 1/
precision), we use an IG(2.01, 1.01) prior, giving rise to a prior
mean of 1 and prior variance of 100. For the variance-covariance

matrix D�1
b , we assumed Wishart 3;

0:1 0
0 0:1

� �� �
; and for

D�1
w , we assumed Wishart 2;

0:1 0
0 0:1

� �� �
:

4.2 Computational Details

We ran two chains of the Gibbs sampler with widely dis-
persed initial values. The initial values for the fixed parameters
were selected by starting with the prior mean and covering 63
standard deviations (SDs). The initial values for the precision
were arbitrarily selected. Initially, some evidence of poor
mixing was found regarding the SD of the random effect slope
in the spline model. Following Zhao, Staudenmayer, Coull, and
Wand (2006), we then used several other choices of the inverse
gamma and the folded-t prior distributions for the SDs. The
folded-t class of prior densities has been recommended by
Gelman (2006) in a hierarchical model over the commonly
used IG distribution. The folded-t prior has the advantage of
improving computational efficiency by reducing dependence
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among parameters (Liu, Rubin, and Wu, 1998; Liu and Wu,
1999) and yields a Gibbs sampler that is less prone to slow
mixing when the SDs are near zero. We found that use of a
moderate to highly dispersed inverse gamma prior behaved
erratically. However, the use of folded-t prior on SDs dramat-
ically improved the mixing and fits were stable. Thus, we resort
to the folded-t class of prior for our results. See Zhao, Stau-
denmayer, Coull, and Wand (2006) and Gelman (2006) for
details of this prior. We also centered the covariates about mean
to have better convergence. In our simulation, 25,000 samples
were discarded as burn-in, and of the next 75, 000 samples, we
used every third value to construct the posterior estimate.
Convergence was assessed visually by monitoring the dynamic
traces of Gibbs iterations and by computing the Gelman–Rubin
convergence statistic (Gelman and Rubin, 1992). To check for
sensitivity, we ran the proposed model with different sets of
priors and found little evidence of any prior sensitivity,
although slow mixing was evident in analysis using a highly
diffuse prior.

4.3 Analytical Results

Of the 282 subjects enrolled into the study, 91% were
African American. Enrollment age ranged from 14 to 17 with a
mean of 15 years and a SD of 1.1 years. Lifetime number of
partners reported at the time of enrollment ranged from zero to
28 with a mean of 2.85 (median 2) and a SD of 3.8. Forty four
of the study subjects (15.6%) had a history of STD infection.

Table 1T1 reports the posterior mean, median, SD, and 95% CI
for the parameters in the ZIP regression model. Similarly, the
parameter estimates for the dropout and time-varying covariate
models are reported inT2 Table 2.

The ZIP regression analysis yielded a number of observa-
tions. (1) Older age was associated with increased probability
of the subject being in the sexually active state (odds ratio (OR)¼
expðb̂p

12Þ ¼ 1.99, 95% CI ¼ [exp (0.0864), exp (1.180)] ¼
[1.09, 3.25]), although an increase in age did not necessarily
increase the weekly rate of coital frequency given the subject

was in a sexually active state. (2) Baseline STD history was a
strong indicator for the subject’s state of sexual activity (OR ¼
expðb̂p

13Þ ¼ expð0:2583Þ ¼ 1.29, 95% CI ¼ [1.10, 6.84]). A
young woman that had a positive STD history at enrollment
was more likely to be in the sexually active state during the
study period. However, STD history did not appear to affect the
rate of coital events. (3) Lifetime number of partners that the
subject reported at baseline was also positively associated with
the probability of being in a sexually active state (OR ¼
expðb̂p

14Þ ¼ 1.45, 95% CI ¼ [1.21, 1.59]). Again, no similar
effect was observed for the rate of coital frequency. (4) Lower
positive mood was associated with an increased probability of
being in a sexually active state (OR¼ expðb̂p

21Þ ¼ 0.79, 95% CI¼
[0.68, 0.91]); however, for a subject that was in the sexually
active state, higher positive mood was associated with
increased coital frequency (incident rate ratio or IRR ¼
expðb̂l

21Þ ¼ 1.11, 95% CI ¼ [1.06, 1.16]). (5) Higher sexual
interest was associated with increased coital frequency (IRR ¼
expðb̂l

22Þ ¼ 1.52, 95% CI ¼ [1.13, 2.47]). (6) Coital frequency
in the prior week was associated with both increased proba-
bility of being in a sexually active state (OR ¼ expðb̂p

31Þ¼3.69,
95% CI ¼ [2.80, 5.55]) and increased coital frequency in the
current week (IRR¼ expðb̂l

31Þ ¼ 1.04, 95% CI¼ [1.02, 1.06]).
(7) From F3Figures 3 and F44, it is evident that both the probability
of being in a sexually active state and the rate of coital fre-
quency given the subject was in an active state exhibit non-
linear time effects, and the effects vary from subject to subject.
In particular, the rate parameter monotonically increased over
time, suggesting either a developmental effect of sexuality in
adolescents or a possible activation effect of repeated ques-
tionnaires. For example, Figure 3 shows that, in the study
cohort, the probability of a subject being in a sexually active
state is not entirely monotone, but the intensity of sexual
activities steadily increases over time. (8) Finally, we noted that
the correlation was modest between random subject effects in
the logistic and loglinear models (0.29), suggesting a relatively
weak positive link between the subject’s current state of sexual
activity and her intensity or the level of activity of sexual
behaviors given she was in an active state. This last observation
demonstrates the usefulness of the proposed joint modeling
structure in assessing the inter-relationship among latent states,

Table 1. Parameter Estimates of the ZIP Regression Models

Parameter Mean Median SD 95% CI

Zero-inflated
Logit
b

p
11 (Intercept) 0.4463 0.4402 0.102 (0.046, 1.69)

b
p
12 (AGE) 0.6874 0.7155 0.249 (0.0864, 1.18)

b
p
13 (STD) 0.2583 0.2445 0.2892 (0.0949, 1.923)

b
p
14 (PTR) 0.375 0.337 0.118 (0.1902, 0.462)

b
p
21 (MOOD) �0.2318 �0.2305 0.077 (�0.3904, �0.0908)

b
p
22 (SI) 0.5769 0.5758 0.4489 (�0.295, 1.55)

b
p
31 (AR(1)) 1.306 1.288 0.173 (1.029, 1.713)

Log-linear
bl

11 (Intercept) 0.0296 0.0302 0.0035 (�0.0722, 0.1259)
bl

12 (AGE) �0.0251 �0.027 0.14 (�0.031, 0.0306)
bl

13 (STD) 0.2307 0.2383 0.258 (�0.3383, 0.6504)
bl

14 (PTR) 0.0325 0.0293 0.024 (�0.0101, 0.0802)
bl

21 (MOOD) 0.1034 0.105 0.026 (0.0572, 0.1493)
bl

22 (SI) 0.4193 0.3945 0.2482 (0.1181, 0.906)
bl

31 (AR(1)) 0.0355 0.03257 0.00882 (0.0239, 0.0567)

Table 2. Parameter Estimates for the Dropout Model and
Time-varying Covariates

Parameter Mean Median SD 95% CI

Dropout parameter
z1 (Intercept) 0.2651 0.2809 0.8061 (�0.414, 1.79)
z2 (AGE) 0.7953 0.7694 0.1051 (0.6348, 1.032)
z3 (STD) 0.0392 0.0296 0.16 (0.013, 1.319)
c1 (Current obs) 1.977 1.97 0.2052 (1.571, 2.391)
c2 (Previous obs) �0.4828 �0.4806 0.1444 (�0.7759, �0.2086)
MOOD (Covariate)
a01 (Intercept) 3.556 3.65 0.182 (2.692, 4.95)
a11 (AR(1)) 0.0955 0.0954 0.084 (0.0788, 0.1116)
SI (Covariate)
a02 (Intercept) 1.138 1.137 0.04707 (1.047, 1.232)
a12 (AR(1)) 0.2908 0.291 0.0103 (0.2698, 0.3117)
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which may be particularly useful in the analysis of behavioral
data from a variety of fields.

Similarly, from the estimates of parameters in the dropout
and time-varying covariate models (Table 2), we had the fol-
lowing observations. (1) Dropout probability appeared to be
related to the baseline covariates AGE, STD, and current and
previous coital frequency values. (2) The estimates of the
parameters c1 and c2 of the dropout models were 1.977 and
�0.4828, respectively, suggesting that dropout might be
informative and the missing probability of yij might depend
more on the current values of the coital frequency and less on
the previous value. Thus, any statistical analysis that ignores
the dropout may be biased. (3) Older subjects and those with an
STD history were more likely to drop out, perhaps due to
competing demands for time in older teens. (4) Both mood
and sexual interest measures of the current week were corre-
lated with their corresponding values of the previous week,

suggesting continuity in the adolescent mood and sexual
interest.

4.4 Model Comparison

To compare candidate models, we computed pðYobs;i;Tobs;i;
RijYobs;�i;Tobs;�i;R�iÞ (Geisser and Eddy 1979), which is the
posterior predictive density of ðYobs;i;Tobs;i;RiÞ for subject i
conditional on the observed data with a single data point
deleted. This value is known as the conditional predictive
ordinate (CPO; Gelfand, Dey and Chang 1992; Chen et al.
2000) and has been widely used for model diagnostic and
assessment.

For the ith subject, the CPO statistic under model Ml;1 # l #

L is defined as

CPOi ¼pðYobs;i;Tobs;i;RijYobs;�i;Tobs;�i;R�iÞ
¼Eul
½pðYobs;i;Tobs;i;RijulÞjYobs;�i;Tobs;�i;R�i�

where �i denotes the exclusion of the data from subject i. The
ul is the set of parameters of model Ml, and pðYobs;i;Tobs;i;
RijulÞ is the sampling density of the model evaluated at the ith
observation. The preceding expectation is taken with respect to
the posterior distribution of the model parameters ul given the
cross-validated data ðYobs;�i;Tobs;�i;R�iÞ. For subject i, the
CPOi can be obtained from the MCMC samples by computing
the following weighted average:

dCPOi ¼
1

M

XM
m¼1

1

f ðYobs;i;Tobs;i;RijuðmÞl Þ

 !�1

where M is the number of simulations. The um
l denotes the

parameter samples at the mth iteration. A large CPO value
indicates a better fit. A useful summary statistic of the CPOi is
the logarithm of the pseudomarginal likelihood (LPML),
defined as LPML ¼

Pn
i¼1 logðdCPOiÞ. Models with greater

LPML values represent a better fit. The LPML is well defined
under the posterior predictive density and it is computationally

Figure 3. Spline estimates of the average time effects on logit p and
log l.

Figure 4. Spline estimates of individual time effects on logit p and log l of four individual subjects.
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stable. The LPML has been used extensively in Bayesian
analysis for model selection in situations of simpler and more
complicated models and has a long history in statistics liter-
ature (see Chen et al. 2000, Chap. 10; Brown and Ibrahim 2003;
Brown, Ibrahim, and DeGruttola 2005).

We compared the following models using LPML:

Model 1: This is the model that we used in the analysis.
Model 2: Model 1 without the spline components in the ZIP

model; i.e., the splines are replaced by a linear time effect (tij).
Model 3: Independent model; i.e., the ZIP model is inde-

pendent of the dropout process.We then considered several
dropout models, keeping other parts of the model unchanged:

Model 4: Logit (hij) ¼ j1 þ j2Agei þ j3STDi þ c1yij

Model 5: Logit (hij) ¼ j1 þ c1yij þ c2yi,j–1

Model 6: Logit (hij) ¼ j1 þ c1yij

The LPML values for Models 1–6 were �10,405.7,
�12,198.4,�11,201.8,�11,086.1,�11,066.9, and�11,132.5,
respectively. The proposed model had the highest LPML val-
ues, suggesting that it had the best fit among the six candidate
models. The large difference between the LPML values of
Models 1 and 2 indicated the presence of a nonlinear time
effect, and justified the use of the spline-based model for time
effects in the analysis.

4.5 Simulation

In this section, we present a small simulation study to justify
the relative complexity of the proposed model and to verify the
performance of the model fitting procedure. We first note that
the complexity of the model arises primarily from four aspects:
(1) explicit modeling of the autoregressive effect of the main
outcome variable; (2) explicit inclusion of time-varying cova-
riates; (3) spline-based modeling of nonlinear time effects; and
(4) accommodation of nonignorable dropout. While it is well
known that failure to accommodate informative dropouts may
lead to questionable inference (Wu and Carroll 1988;
Schluchter 1992; Little 1995; Roy and Lin 2005; Wu 2007), the
impact of inattention to the first three complicating factors has
not been well studied. We therefore focus on these three issues
in the simulation study. Additionally, the simulation study has
also given us a chance to verify the performance of our model
fitting procedure.

Specifically, we consider the following model:

logitð1�pijÞ ¼ b
p
11þb

p
13Xiþ b

p
21Zij þ b

p
31Yi;j�1 þ bi1 þ f pðtijÞ;

logðlijÞ ¼ bl
11 þ bl

13Xi þ bl
21Zij þ bl

31Yi;j�1 þ bi2 þ f lðtijÞ;
ð19Þ

where we use f pðtÞ ¼ 1=2 cos2ððt þ 12Þ=12Þ and f lðtÞ ¼
0:6 sin2ððt � 3Þ=12Þ, for t¼ 1, 2, . . ., 24, to depict the nonlinear
time effects (seeF5 Figure 5). Also, in this model, we consider a
subject-specific covariate Xi, random intercepts bi ¼ (bi1, bi2)t,
as well as a time-varying covariate Zij, where i ¼ 1, 2, . . ., 50,
j ¼ 1, 2, . . ., 24.

Data were generated from (19) to mimic the real data pre-
sented in the article. Specifically, for the ith subject, we first
generated Xi from a Bernoulli distribution with probability p

ðxÞ
0 :

For the same subject, we then generated a 24-dimensional

vector Zi ¼ (Zi1, . . ., Zi24)t ; MVN(mz, Sz) to represent the
values of the time-varying covariate Zij for the 24 time points.
We gave Sz an AR(1) variance-covariance structure to maintain
a correlation between the Z values in adjacent weeks within the
subject. Similarly, random intercepts bi ¼ (bi1, bi2)t were
generated from a bivariate normal distribution. We then cal-
culated the values of f pðtijÞ ¼ ð1=2Þ cos2ððtij þ 12Þ=12Þ and
f lðtijÞ ¼ 0:6 sin2ððtij � 3Þ=12Þ at each time point. Finally, we
generate the baseline value for the Yi1 from ZIP(p1, l1). Models
in (19) were then used to calculate pi2 and li2. From pi2 and li2,
we generated Yi2 ; ZIP(pi2, li2). We then repeated this last step
to generate the rest of the Y values. Parameter values used in the
simulation were chosen to produce data that are similar to the
real data. In particular, we take b

p
11 ¼ 0:45;bp

13 ¼ 0:25,
b

p
21 ¼ �0:21, b

p
31 ¼ 1:3 and bl

11 ¼ 0:1, bl
13 ¼ 0:25, bl

21 ¼ 0:2;
and bl

31 ¼ 0:04: One hundred simulated datasets were used in
the simulation study.

Using generated data, we fitted our proposed semiparametric
ZIP regression model as well as the ZIP regression model with
a linear time effect (i.e., without splines for time effect).
Results are presented in Table 3. We computed the ‘‘relative
bias’’ (RB), which is defined as the ratio of bias and the
absolute value of the true parameter, mean square error (MSE),
and coverage probability (CP). The numbers in parentheses in
Table 3 T3are the true values of the parameters.

A number of observations can be made from the simulation
results. (1) The proposed method is able to produce accurate
estimates of the model parameters with minimal bias, MSE,
and which have good coverage probabilities. (2) In the pres-
ence of nonlinear time effects, traditional ZIP regression
models with linear time effect often produce biased estimates,
larger MSEs, and substantially lower CP in the time-varying
covariates, although other covariates appear to be spared from
such effects of the model misspecification. Figure 5 clearly
shows that the proposed model is able to recover the unobserved
nonlinear time effects reasonably well. (3) Finally, we observed
from the simulation that the proposed semiparametric regression

Figure 5. True and estimated average time effects on logit p and log
l from the simulation study. Note: solid line represents the true curves
and dashed line represents the estimated curves.
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model had larger LPML values than its parametric counterparts,
suggesting improved fit of the new model. Based on these
observations, we contend that the models used in the analysis
have good performance in the modeling of zero-inflated
behavioral counts. Despite the increased complexity, the new
analysis provides a safeguard against potential effects of mis-
specification of the time effects, thus preventing the occurrence
of large biases in the estimation of time-varying effects.

5. DISCUSSION

Sexually transmitted infections are spread primarily through
sexual intercourse. A young woman is at risk for STI once she
becomes sexually active. Yet, little is known about the con-
textual factors that are associated with the occurrence of coitus
and the temporal patterns in which adolescent sexual behaviors
evolve. This study is perhaps the first longitudinal examination
of these issues based on a sizable cohort. A major strength of
this investigation is the inclusion of young teens that were still
in their early years of sexual experience. Other strengths of the
study include the longitudinal follow-up and the extensive
behavioral information that was collected in the process.

Contrary to the alarming anecdotes reported by the lay press
in recent years, the findings of this article reveal a more
complicated picture: Sexual behaviors in adolescents are
influenced strongly by intrinsic factors such as mood and
sexual interest, rather than being driven completely by cir-
cumstances over which the teens have little control. This gives
us reason to believe that more effective education and pro-
motion of self-protective behaviors might help to reduce the
risk of disease transmission. It also suggests that future pre-
vention strategies should take into account of the emotional
needs of the teens. The increasing levels of sexual activity over
time are not surprising, but their individual-specific patterns
seem to suggest that there are no uniformally followed patterns
in terms of sexual behavioral development. Considering the age
range of our study participants (14–17 years), we believe that
intervention measures must start early to be effective.

Methodologically, the most challenging aspect in the mod-
eling of human behavior is perhaps the incorporation of rele-
vant contextual information. In studies of STD epidemiology
and human sexuality, this contextual information often includes
the concurrent mood, sexual interest, prior behavior, and subtle
time effects that cannot be dismissed. Along the same line,
issues such as dropout and autocorrelations existing among the

time-varying covariates also complicate the analysis. These
various factors form an interactive system in which the
behaviors of interest are influenced by the other factors, which
in turn are influenced by the observed behaviors. Therefore, a
unidimensional modeling approach with a narrower focus often
fails to capture the full complexity of the situation and may
produce an overly simplistic depiction of the behavior.

To address these shortcomings, we propose a new analytical
framework that takes into account most of the major compo-
nents in the modeling of human behaviors. Our joint model is a
complicated system, but it is also necessary to place the
behavioral event in its original context. Such an approach is
likely to help investigators achieve a more comprehensive
understanding of the studied behavior. As an applied statistical
tool, this method is motivated by a real epidemiological inves-
tigation. Although the data analysis that we presented in this
article is preliminary in nature due to the fact that the full data
are still being collected, the initial results are promising and
they have revealed some previously underappreciated charac-
teristics of adolescent behavior. As a result, we feel that the
basic construction of the model might be appropriate for other
longitudinal studies as well. Although we recognize that this is
an initial step in seeking a more comprehensive solution, our
effort has demonstrated the feasibility of this general strategy.
Preliminary results from the simulation study have provided
assurance of the modeling procedure. Additionally, it has also
highlighted the potential pitfalls of using misspecified para-
metric ZIP regression models.

Technically, the model employs some of the more recent
developments in statistical methodology. The proposed joint
model is flexible and new in several aspects. (1) It represents a
semiparametric development of the ZIP model. The semi-
parametric approach is useful, particularly when the linearity of
time effect is in question. (2) It incorporates the dropout process
in the ZIP model. Without the accommodation of dropout,
models may produce biased results. (3) It takes into account the
time-varying covariates. (4) It considers the autocorrelation
structures among behavioral outcomes and time-varying cova-
riates. Our joint modeling approach deals with both missing
responses and missing covariates simultaneously and is built to
borrow strength from each of the modeling components. Through
a real application, we have demonstrated that the joint modeling
increased the LPML values and resulted in a better fit of the data.

A few limitations of our methods must be underlined. One of
the major issues is the robustness of the distributional
assumption. In our application, we use a parametric normal
distribution for the random effects. A broader class of dis-
tributions such as Dirichlet processes may be a viable alter-
native. Another issue is the fixed knot points. Random knot
points would be more flexible; however, such models will be
numerically challenging in this setup. Third, the parametric
dropout model may be overly simplistic. Given a sufficient
number of dropouts, one can build a more complex parametric
or semiparametric structure, as suggested by Chen and Ibrahim
(2006). It will be worthwhile to see if the complex modeling of
the dropout and the use of robust random effects improve the
goodness of fit and change the results of the analysis. We are
currently exploring these aspects of the modeling. Notwith-
standing these limitations, this research has pointed to a new

Table 3. Simulation Results

Parameter

Model with Spline Linear Model

Mean RB MSE CP Mean RB MSE CP

b
p
11 (0.45) 0.47 �0.02 0.042 0.94 0.43 0.03 0.048 0.93

b
p
12 (0.23) 0.25 0.02 0.023 0.92 0.21 0.02 0.037 0.91

b
p
13 (�0.21) �0.2 �0.03 0.029 0.96 �0.13 0.063 1.89 0.89

b
p
14 (1.3) 1.37 �0.02 0.047 0.95 1.1 0.05 0.1 0.92

bl
11 (0.1) 0.1 0.01 0.041 0.94 0.12 0.01 0.052 0.94

bl
12 (0.25) 0.23 0.02 0.08 0.92 0.2 0.04 0.11 0.90

bl
13 (0.2) 0.22 0.02 0.06 0.97 0.08 0.07 1.46 0.88

bl
14 (0.004) 0.004 0.01 0.032 0.97 0.004 0.03 0.04 0.98
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road map for the analysis of longitudinally measured behav-
ioral data.

[Received October 2007. Revised June 2008]
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