See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220796058

# A Fuzzy-Graph-Based Approach to the Determination of Interestingness of Association Rules 

Conference Paper in Lecture Notes in Computer Science • December 2002
DOI: 10.1007/3-540-36277-0_34 - Source: DBLP

## CITATION

1

2 authors:
B. Shekar

Indian Institute of Management Bangalore
31 PUBLICATIONS 168 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Interestingness of Association rules View project

# A Fuzzy-Graph-Based approach to the determination of Interestingness of Association Rules 

B. Shekar and Rajesh Natarajan

Indian Institute of Management Bangalore, Bangalore, India

## Knowledge Management

Knowledge- a significant organizational resource
\&Knowledge Management Systems (KMS)
$\measuredangle$ Knowledge creation, storage/retrieval, transfer and application
\&Tacit knowledge

## Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns in large databases (Fayyad, et al., 1996)

## Association Rules

\& Implication rules that bring out hidden relationships among attributes and/or items using co-occurrence as the basis.
$\&$ Bring out natural affinity between items purchased together in customer transactions
$\&$ Cannot indicate the exact nature of relationship
Useful in exploratory studies

## Association Rules (Cont'd.)

An Association Rule is defined to be an implication rule of the form

## A? B,

where $A, B$ ? I and $A$ ? $B=$ ?
i.e. $A$ and $B$ can be a single item or a set of items from 1 and there is no item that is common to the sets $A$ and $B$.

## Association Rules (Cont'd.)

## Rule : A? B

Support ? $\frac{\text { No. of transactions containing A and B }}{\text { Total no. of transactions in the database }}$

Confidence ? $\frac{\text { No. of transactions containing } A \text { and } B}{\text { Total no. of transactions containing } A}$

## Association Rules (Cont'd.)

Bread ? Butter
\{conf. $=80 \%$ support=10\% \} means
"that 80\% of the transactions that contain bread also tend to contain butter, and they together occur in 10\% of the overall transactions"

## Characteristics of Association Rule Mining Algorithms

$\star$ Massive search through the database -Complete examination of the database \&Parameters of the rules are exact, no estimation
eVery High Demands on I/O, Memory and Computation
eHigh Degree of Automation: Very little user interaction

## Consequences

\& Large number of Rules Discovered (Rule Quantity problem)

Example: Census database, No. of rules generated=23,712 (Brin, Motwani, et al., 1997)
Telephone company fault management (Simultaneous faults occurrence in a network)
Rules generated=1,426 (Mannila, et al., 1994)
\& Many of the rules are obvious to the user/domain expert (Rule Quality problem)
e.g. Has Licence? Age >18;
"five year olds do not work"
"Unemployed residents do not earn income from work"
(Brin, Motwani, et al.,1997)

## Consequences

$\&$ Really novel, relevant, useful and interesting rules are very few

Example: Rules from a Hurricane Database (Major and Mangano, 1995)

- Started with 529 rules and ended up with only 19 rules that were really useful and relevant.
eVery difficult for the domain expert/user to get an overview of the domain
exypical users have limited time at their disposal


## I nterestingness Measures

Quantify the amount of interest that a rule(pattern) is supposed to evoke in a user examining it
\&Elusive concept that is very difficult to capture (Silberschatz, 1996)
\&Objective and Subjective
\&Actionability, Unexpectedness, User Knowledge/Goals, Anticipation

## Item Relatedness

$\&$ Relationships between items

- Generic categories (primary functional purpose)
- Secondary functionalities
- Domains of application

EItem-pairs in Association Rules have high frequency of occurrence
\&Item pairs that contain unrelated or weakly related items are interesting
\& Bread ? Butter
Chocolate? Paper Napkins, Chocolate? Pencils
Beer? Diapers

## Approach towards Finding I nterestingness of Association rules

\& Relationships between items are captured in the structure of a Fuzzy Taxonomy
\&Define an Item-relatedness measure based on the structural aspects of the Fuzzy Taxonomy
$\&$ Find out the relatedness between itempairs
.Combine relatedness to arrive at an interestingness value for the rule

## Fuzzy Taxonomy

eExtension of the traditional concept hierarchy (taxonomy) tree
\&Allows us to express the following kinds of relationships

An item belonging to two or more higher-level concepts

- Items used to substitute the functions of other items to various extents (e.g. spoon, knife etc.)


## Fuzzy Taxonomy

$\&$ A child need not be a full member of the category/concept of parent
Connections restricted between leaf-level items and higherlevel concept nodes
\& Membership function: Extent to which the child node belongs to its parent ; $\mu$ ? $[0,1]$
\& Membership Transfer: Child to parent to ancestors
\& Membership Transfer: Membership grade of a child node 'c' in its ancestor 'a'

$$
?_{(\mathrm{c}, \mathrm{a})}=\max \left\{?_{(\mathrm{c}, \mathrm{a})}(\mathrm{k})\right\}
$$

where $k=1,2$, ....N.
? ${ }_{(c, a)}(k)$ is the membership grade of the child node ' $c$ ' in its ancestor ' $a$ ' by the virtue of the path ' $k$ '.

## Highest-level node of path [ $\mathrm{H}_{\mathrm{A}, \mathrm{B}}(\mathrm{p})$ ]

Node that occurs at the highest level (i.e. nearest to the root node) in the simple path ' $p$ ' connecting items A and $B$

- Plays a pivotal role in determining relatedness between items
Closest common context that relates the two items


## Highest-level Node Membership [ $\mathrm{HM}_{\mathrm{A}, \mathrm{B}}(\mathrm{p})$ ]

$H_{A, B}(p)=\min \left[?_{A, H(A, B)}(p), ?_{B, H(A, B)}(p)\right]$
example: $\mathrm{HM}_{\text {(knife, shoes) }}(p)=\min [0.5,0.6]=0.5$; where the path ' $p$ ' is the fuzzy path connecting the two items

## Why minimum?

## Highest-level Relatedness $\left[\mathrm{HR}_{\mathrm{A}, \mathrm{B}}(\mathrm{p})\right.$ ]

eTwo siblings at higher level of a taxonomy are less related to each other as compared to two siblings at a lower level of the taxonomy
Longer path from root node to highest-level node implies higher relatedness (Why?)
$\leq \operatorname{HR}_{A, B}(p)=$ level $\left[H_{A, B}(p)\right]$

## Node Separation Relatedness [ $\operatorname{NSR}_{\mathrm{A}, \mathrm{B}}(\mathrm{p})$ ]

\&Length of path connecting two items indicates the conceptual distance between them.
$\approx \operatorname{NSR}_{A, B}(p)=$ Length of the simple path ' $p$ ' connecting nodes A and B EInversely related to 'relatedness'

## Overall Relatedness

Each path between two items contributes a component of relatedness between the two items
$\mathbf{O R}_{A, B}(\mathbf{p}) ? \frac{\left(1 ? \mathbf{H R}_{A, B}(\mathbf{p})\right)\left(\mathbf{H M}_{A, B}(\mathbf{p})\right)}{\operatorname{NSR}_{A, B}(\mathbf{p})}$

## Total Relatedness

$\operatorname{TR}(\mathbf{A}, \mathrm{B}) ? ?_{\mathrm{p}} \frac{\mathbf{O R}_{\mathrm{A}, \mathrm{B}}(p)}{\mathrm{K}} ? ?_{\mathrm{p}} \frac{\left(\mathbf{1} ? \mathbf{H R}_{\mathrm{A}, \mathrm{B}}(\mathbf{p})\right)\left(\mathbf{H M}_{\mathrm{A}, \mathrm{B}}(\mathbf{p})\right)}{\mathbf{K} ? \mathbf{N S R}_{\mathrm{A}, \mathrm{B}}(\mathbf{p})}$

Total Relatedness varies from 0 to p , where ' $p$ ' is the maximum number of paths that exist between two items

## Determination of total relatedness between Knife and Shoes (Table 1)

| Path | A= <br> Knife | B= <br> Shoes | NSR | HR | HM | OR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | Crisp <br> $(1.0)$ | Crisp <br> $(1.0)$ | 3 | 1 | 1.0 | 0.166 |
| II | Fuzzy <br> $(0.5)$ | Fuzzy <br> $(0.6)$ | 5 | 1 | 0.5 | 0.05 |
| III | Fuzzy <br> $(0.5)$ | Crisp <br> $(1.0)$ | 6 | 0 | 0.5 | 0.021 |
| IV | Crisp <br> $(1.0)$ | Fuzzy <br> $(0.6)$ | 6 | 0 | 0.6 | 0.025 |

## Table 2: A comparison of Item Relatedness for sample item-pairs.

| No | Item A | Item B | Path I <br> (Crisp <br> Crisp) | Path II <br> (Fuzzy <br> Fuzzy) | Path III <br> (Fuzzy <br> Crisp) | Path IV <br> (Crisp <br> Fuzzy) | (A, B) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Knife | Shoes | 0.1668 | 0.05 | 0.020825 | 0.025 | 0.2626 |
| 2 | Shoes | Safety <br> Shoes | 0.0417 | 0.0167 | 0.6 | 0.3 | 0.9583 |
| 3 | Spoon | Shoes | 0.1667 | --- | --- | 0.025 | 0.19175 |
| 4 | Spoon | Safety <br> Shoes | 0.0417 | ---- | --- | 0.0667 | 0.10835 |
| 5 | Knife | Industri- <br> al Knife | 0.0417 | 0.0125 | 0.5 | 0.225 | 0.77918 |

## Advantages

\&Gradual development of the Fuzzy
Taxonomy by an iterative process
EEasier for a manager to give his views
\&Tacit knowledge of managers is brought out
Qnly rules as identified as interesting need to be examined

## Applications

eShelf-space design
-Display design
\&iscount coupons design
eSelection of products for product bundling to induce sales

## Thank You

## Questions, Clarifications, <br> Comments, Suggestions,..... are Most Welcome



## Algorithm

Compute all paths between an item and root node Path[A,B,k]=
\{[Ipath(A, i)? I path(B,j)]-[Ipath(A, $)$ ? I Ipath(B, j$)]\}$ ? H[I path(A, i)? I path(B,j) ]
where
I path $(A, i)=$ ith path between $A$ and root node I path $(B, j)=j$ th path between $B$ and root node H [Ipath(A,i)? Ipath(B,j) ]=highest-level node

## Use of Relatedness to Compute I nterestingness of ARs

\&Interestingness and Relatedness are opposing notions
\&Relatedness:Item Pairs
\&AR: A ? B
Antecedent Item Pairs
$=\left(\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right\}\right.$, where i? j and $\mathrm{a}_{\mathrm{i}}$ ? A )
Consequent Item Pairs
= a pair $\left\{b_{i}, b_{j}\right\}$ where i?j and $b_{i}$ ? B

## Use of Relatedness to Compute I nterestingness of ARs (Cont'd)

$\&$ Antecedent-Consequent Item Pairs

- a pair $\left\{a_{i}, b_{j}\right\}$ where $a_{i}$ ? $A$ and $b_{j}$ ? $B$, $A$ ? $B=$ ? and $A, B$ ? .
$\approx$ Different Item-pairs might have different Interestingness for Users
\&Relatedness Values for all such pairs are computed


## I nterestingness Measure


$\min \operatorname{TR}(\mathbf{A P})=\operatorname{minimum}\left(\operatorname{TR}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right)\right) ?\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right\} / \mathrm{a}_{\mathrm{i}} ? \mathrm{~A}$ and i? ;
$\min \operatorname{TR}(\mathbf{C P})=\operatorname{minimum}\left(\operatorname{TR}\left(b_{i}, b_{j}\right)\right) ?\left\{b_{i}, b_{j}\right\} / b_{i}$ ? $B$ and i? j ;
$\min \operatorname{TR}(\mathbf{A C P})=\operatorname{minimum}\left(\operatorname{TR}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right)\right) ?\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right\} / \mathrm{a}_{\mathrm{i}} ? \mathrm{~A}$ and $\mathrm{b}_{\mathrm{j}}$ ? $\mathrm{B}, \mathrm{A}$ ? $\mathrm{B}=$ ? and $\mathrm{A}, \mathrm{B}$ ? I ;

## I nterestingness Measure

$\mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}}$ and $\mathbf{m}_{\mathbf{3}}$ are three numbers used to appropriately weigh the interestingness of antecedent, consequent and antecedentconsequent pairs respectively
EHere, $\mathbf{m}_{\mathbf{1}}=\mathbf{m}_{\mathbf{2}}=\mathbf{m}_{\mathbf{3}}=\mathbf{1}$
EImplicit assumption: Greater number of conditions gives more information; leads to greater interestingness
\&Direction of rule not consequential

| Sr. No. | $\begin{gathered} \text { (Table 3) } \\ \text { Rule } \end{gathered}$ | $\begin{gathered} \mathrm{I} \\ \mathrm{~m}_{1}, \mathrm{~m}_{2,} \mathrm{~m}_{3}=1 \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | \{Knife ${ }^{\text {? }}$ \{Shoes $\}$ | 1.2693 |
| 2 | \{Spoon\} ? \{Shoes \} | 1.7384 |
| 3 | \{Industrial Knife\}? \{Safety Shoes\} | 1.8601 |
| 4 | \{Knife\}? \{Safety Shoes\} | 1.9043 |
| 5 | \{Knife\} ? \{Shoes, Safety Shoes\} | 1.9391 |
| 6 | \{Industrial Knife\} ? \{Shoes\} | 2.0305 |
| 7 | \{Knife, Industrial Knife\} ? \{Safety Shoes\} | 2.3321 |
| 8 | \{Industrial Knife\} ? \{Shoes, Safety Shoes\} | 2.3783 |
| 9 | \{Knife, Industrial Knife\} ? \{Shoes\} | 2.4583 |
| 10 | \{Knife, Industrial Knife\} ? \{Shoes, Safety Shoes\} | 2.8061 |
| 11 | \{Spoon\} ? \{Safety Shoes\} | 3.0764 |

## Related Work

$\&$ Taxonomies: Generalized ARs (Srikant et al.,1995), Negative ARs(Navathe, et al.,1998)
\&Fuzzy Taxonomy (Chen et al. 2000)
eInterestingness in Fuzzy Taxonomies (Graff et al.,2000, 2001)
\& Interestingness of Summaries (Hamilton et al.,1995)
\& Text Mining (Basu, et al., 2001)
$\approx$ Noun Sense Disambiguation (Lin et al., 2002)

## Maximum Relatedness Contributed by a path



## Maximum Relatedness Contributed by a path

\&Maximum relatedness contributed by a path in a fuzzy taxonomy of depth $k$ is ' k '
EUse ' $k$ ' to normalize the measure
eseach contribution varies from 0 to 1

## Approaches in Literature

\&Rule Templates (Klemettinen et al., 1994)
$\&$ Rule Covers (Toivonen, 1995)
\&Mining specific kinds of association patterns
(Negative Association rules, Profile
Association rules, Cyclic rules etc.)
©Summarization (GSE patterns)
\&Grouping and Clustering
\& Interestingness Measures

## Rule Templates

\&General structure of the rule given by the user in the form of inclusive/restrictive templates
Neural Networks ? Design and Analysis of Algorithms (0.48, 0.02)
eTemplate: Graduate Course, Any Course
? Design and Analysis of Algorithms
\&User explicitly gives what is interesting and what is not.

## General Rules, Summaries and Exceptions (Liu, Hu et al. 2000)

Example of a GSE pattern
(General Rule, summary and Exceptions)
$\mathrm{A} 1=\mathrm{a}=>\mathrm{X} \quad($ sup $=41 \%$, conf=77\%)
Except R7: A1=a, A2=b => Y
(sup $=10 \%$, conf=83\% )

## Objective Measures of I nterestingness

\&Depend on the structure of the pattern
\&Underlying data used in the discovery process
©Domain Independent
Each measure looks at a specific aspect of the data

Cannot capture all the complexities of the pattern discovery process

## Objective Measures of I nterestingness: Examples

\&Discovery of Surprising patterns like Simpson's Paradox
Statistical Measures like: support, confidence, conviction, implication, rule interest etc.
el nformation theoretic measures like Entropy, Gini, J-Measure, Hellinger Measures etc.

## Subjective Measures of I nterestingness

$\triangle$ Also depend on the User who examines the pattern in addition to structure of the pattern and the characteristics of the data/data generating process
$\star$ Mostly Domain Dependent
¿Unexpectedness (Silberschatz, 1996)
$\&$ Actionability (Usefulness) (Adomavicius, et al. 1997)
\& Anticipation (Roddick and Rice, 2001)
User Goals/User Knowledge (Ram,A. ;1990) ${ }^{42}$

## Subjective Measures of I nterestingness

## General Approach

1. Elicit user opinions/beliefs
2. Express them in a form suitable for computation/Measure for comparison
3. Mine patterns from the database
4. Compare User Opinions with mined patterns
5. Patterns that deviate the most from user beliefs are deemed interesting

