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Abstract

Exaggeration of performance metrics (revenue, product efficacy, ad viewership,

etc.) by entrepreneurs to investors and clients is a common problem in high tech en-

trepreneurship. We model this as a principal-agent problem in a contract-theoretic

setting, where the entrepreneur (agent) can undertake costly actions to strategically

lie about a key performance metric (agent type) in order to extract higher payment

from the investor (principal). We demonstrate that the optimal contract features

widespread exaggeration by all entrepreneur types, and the investor exploits it as

a screening mechanism to ordinally rank the entrepreneur by his true underlying

type. We study the effect of an audit in which, if caught cheating, the agent pays

a penalty. We show that rather than deterring fraud, audits actually amplify the

degree of exaggeration.
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“Every tech startup exaggerates to get funding.”— Sachin Dev Duggal, founder and

ousted “Chief Wizard” of artificial intelligence startup Engineer.ai (Purnell and Olson,

2019)

1 Introduction

The above quote by a prominent entrepreneur alludes to a problem that may be the

entrepreneurship world’s worst-kept secret, that a lot of startup founders egregiously

exaggerate key performance metrics (revenue, product efficacy, daily active users, ad

viewership metrics, etc.) to boost their valuation for funding or takeovers, or simply

command higher prices when dealing with potential clients for future business. Sachin

Dev Duggal was the co-founder of artificial intelligence startup Engineer.ai, which pur-

portedly allows developers to build their own software applications using an easy-to-use

graphical user interface. Though the company claimed that it used artificial intelligence

at the back-end, several former employees revealed that its capabilities were greatly ex-

aggerated by Duggal, and the company was actually using human engineers in India to

do the job. Thus, the company’s venture capital funding of $29.5 million may have been

based on false premises (Purnell and Olson, 2019).

Theranos and its founder Elizabeth Holmes constitute another case in point. The

medical diagnostics startup (valued at $9 billion as late as 2017) was found to have fraud-

ulently exaggerated the accuracy of its in-home blood testing kits. Further investigations

following up on claims by an internal whistle-blower, revealed falsification of tests, sup-

pression of quality control concerns, and intimidation of whistle-blowers by the startup’s

top management. Holmes faces criminal cases for her actions that may have jeopardized

not only Theranos’s investors, but also patients using its diagnostic kits (Carreyrou, 2016;

LA Times, 2019).

Revenue exaggeration by entrepreneurs, usually before a round of funding, an initial

public offering, or takeover, is another major source of concern in the startup world.

Employees of vegan food startup Hampton Creek have been caught buying their own

products from supermarket shelves, attempting to make their product seem more popular

to retail partners (Griffith, 2016). Twitter acquired ad tech company MoPub in 2013 when

its founder boasted of annual revenues approaching $100 million on his blog, only to see

revenues of $6.5 million in the first two quarters of that year (Popper, 2015). Shopping

deals startup Groupon recalculated its financial results for the previous three years “to

correct for an error” in its revenue reporting, leading to more than halving of its claimed

revenue from $1.52 billion to $688 million in the first half of 2011 (De La Merced and

Rusli, 2011). Chinese e-commerce venture Pinduoduo stands accused by investment firm
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Blue Orca, for allegedly exaggerating its gross revenue before its initial public offering

(Nikkei Asian Review, 2018).

Some new (and occasionally even mature) ventures fraudulently tweak other key per-

formance metrics to entice their clients or partners to either do business with them, or

command higher prices for their services. Ride sharing platform Uber was fined $20

million by the US Federal Trade Commission for exaggerating driver earnings (FTC,

2017). Consulting firm TPI finds that outsourcing reduces costs by an average of 15% as

compared to vendors’ claims of up to 60% (Price, 2007).

In a recent high profile case, Facebook agreed to pay damages of $40 million in an

out-of-court settlement to content providers after admitting that its video viewership

numbers were inflated by up to 900% (Morris, 2019). Facebook’s egregious video metrics

inflation has consequences beyond just the $40 million fine that the social media giant

paid. A viral series of tweets1 by comedian and television actor Adam Conover outlines

how College Humor, a digital video content creator and his previous employer, switched

platforms from YouTube to native video hosting on Facebook due to the latter’s inflated

claims of video viewership. This allegedly resulted in massive falls in viewership num-

bers, and hence advertising on College Humor, jeopardizing its profitability. Conover

claims that Funny or Die, another well-known video content provider, also suffered simi-

lar setbacks as College Humor. Note that apart from the losses incurred by these portals,

there were competitive consequences for YouTube, Facebook’s main competitor for such

video hosting (and College Humor’s previous native host). In this case however, met-

rics falsification by an established company may have harmed its clients who are new

ventures.

In this paper, we develop a model in which an entrepreneur seeks payment from an

investor, based on a key performance metric. The entrepreneur can undertake a costly

action to exaggerate his performance metric and cover up his lie, but under the threat

of being caught by an imperfect and non-strategic audit. Our model builds on Crocker

and Morgan (1998) who model inflation of losses by insurance claimants and of Crocker

and Slemrod (2007), who model strategic misreporting of earnings in financial reports

by CEOs. However, they assume that such claims are unverifiable. In our approach, we

relax this assumption and and introduce a non-strategic audit in the game, which can

detect fraud with a given probability. On successful fraud detection, the entrepreneur

experiences escalation of his costs, over and above what is incurred in falsifying the metric.

An exogenous fraction of this extra cost is then paid to the investor as restitution, while

the remaining is either paid as fines to a regulatory body, or incurred as reputation cost

by the entrepreneur.

1https://twitter.com/adamconover/status/1183209875859333120
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Using a contract-theoretic approach coupled with optimal control theory, we demon-

strate that the optimal contract must accommodate widespread exaggeration by en-

trepreneurs. We further demonstrate that the amount of falsification in the reported

performance metric in fact increases with the true underlying metric of the entrepreneur,

i.e. his type. We postulate a signaling mechanism as the cause of this phenomenon. This

is because the only way for an entrepreneur to credibly signal his true underlying metric

(type) is to exaggeratedly report it, because other types are doing the same. The investor

must tolerate this, and even compensate the entrepreneur for the optimal faking level,

because he can exploit this as a screening mechanism to ordinally sort the entrepreneur

by his true underlying metric.

Our model further demonstrates that the audit backfires, i.e. faking level by the

entrepreneur increases, and investor’s profit decreases as the exogenous accuracy of the

non-strategic audit increases. Furthermore, an increase in the penalty on detection, i.e.

the exogenous cost escalation factor, also encourages more faking while simultaneously

reducing the investor’s profit under the same conditions. We posit that this is because the

audit distorts the underlying signaling process, and the cost penalties on detection are

not sufficient to deter falsification. We note similarities of our results with manufacturer-

supplier audits in Plambeck and Taylor (2015).

The contribution of this paper is threefold. First, it explains a well-known scenario

in the world of high tech entrepreneurship. The type-signaling mechanism we show at

the heart of the attribute exaggeration problem explains why this phenomenon is so

widespread. Second, we contribute to the literature on backfiring audits. Our observa-

tions in this context are significant for both potential investors and other principals like

business clients, because intuition suggests that close auditing should deter fraud. In-

deed, there are parallel efforts ongoing to develop better fraud detection mechanisms (for

human auditors) and algorithms (for automated audits). While audits may work in many

scenarios to deter fraud, our model indicates that more accurate audits actually distort

the signaling mechanism underlying the principal-agent game here. Third, our model can

be used to advise regulators and policy makers on appropriate penalties to impose on

fraudulent entrepreneurs. Escalating the penalty on the agent actually encourages fraud,

and thus, design of punitive measures on fraud detection may be rethought.

The fraudulent exaggerations cited above are not mere puffery (usage of unverifiable

claims like “this tie looks great on you” or “this car drives very well”), a common tactic

in consumer advertising, and legally recognized as a class of advertising claims that the

law assumes are “incapable of causing any consumer deception” (Preston, 1977; Rotfeld

and Rotzoll, 1980). Note that in each of these examples, no verifiable metric is used to
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define “great” or “drives well.”2 Puffery is beyond the scope of our work.

We model an entrepreneur who undertakes costly actions to fraudulently misreport

a key performance metric used by an investor, that is both measurable and verifiable.

In the presence of complete and unbiased information to both principal and agent, it

would not be possible for the agent to exaggerate metrics like revenue, blood test accu-

racy, video viewership or Uber driver earnings. However, in many cases (including all

of the above), the entrepreneur has access to company databases which he can tamper

with, pliant employees whom he can collude with, potential whistle-blowers whom he

can threaten, and click farms he can employ to astro-turf online engagement, and thus

falsify information leading to exaggerated performance metrics. Such actions also make

it difficult for regulators and auditors to detect fraud. While many high-profile cases of

fraud are both detected and punished, it is clear that several are not. In fact, informal

chats with startup founders reveal the truth behind Sachin Dev Duggal’s statement at

the beginning of this paper; that several founders do exaggerate key performance metrics

to both investors and clients to further their business interests. Our research aims to

uncover the incentive systems leading to such fraudulent exaggeration of performance

metrics under imperfect audit.

The rest of this paper is organized as follows. In section 2, we talk about audits and

their role as deterrents of misdemeanor in various contexts. In section 3, we provide some

methodological background, before specifying the principal-agent problem in a contract-

theoretic framework. We solve for the optimal contract using optimal control theory,

and discuss comparative statics to investigate the effects of audit on fraud and investor

welfare. Finally, we offer concluding remarks in section 4.

2 Audits as deterrents of misdemeanor

Intuition suggests that misdemeanor in general, and fraud in particular, can be dissuaded

by close auditing, and appropriate penalties imposed in case a fraud is exposed. These

penalties could include damages paid to the affected principal, or fines to non-strategic

regulators like the Federal Trade Commission or the Securities and Exchange Commission.

Intuition may further suggest that if a regulatory body imposes a large fine, it is only

fair that the principal is given that amount (after subtracting any expenses the regulator

may have) in the in the interest of compensating him for losses incurred. However, there

exists a vast literature on audits, with mixed results, based on the kind of fraud being

studied. In the next two paragraphs, we summarize a few studies germane to our problem

2Though these claims may not not be credible individually, Chakraborty and Harbaugh (2014) ana-
lytically show that puffery can still be perceived as credible, because exaggerating one aspect of a product
comes at the implicit cost of not talking about another aspect.
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at hand.

In a study of click fraud, Wilbur and Zhu (2009) demonstrate how a third party

auditor can benefit the search industry. In an empirical study, Dionne et al. (2009)

find some deterrence effects of an optimal policy involving special investigation of “red

flags” while processing insurance claims. Hoopes et al. (2012) find that increasing the

probability of internal revenue service audits on US companies has a positive effect on

their cash effective tax rates.

Along with the literature in support of audits, there exists a body of literature finding

its limits. An early example is Townsend (1979), who demonstrates that for insurance

audits with deterministic auditing, there exists a cutoff above which auditing claims is

sub-optimal for the principal. More recently, Plambeck and Taylor (2015) find conditions

for a “backfiring” audit, where increasing auditing effort by a manufacturer (principal)

over a supplier (agent—who may mistreat workers, cause pollution etc.) and imposing

higher penalties to an offending supplier, makes the principal worse off. This is be-

cause the manufacturer expends more effort in evading the audit rather than avoiding

the transgression in question. Rather, they show that squeezing the supplier’s margins

in the “backfiring” condition is a better deterrent for the transgressions. Our study,

though methodologically different, and modeling a different kind of transgression, finds

a “backfiring” audit condition as well, dictated by the characteristics of the cost func-

tion. Boleslavsky et al. (2017) also find the prevalence of exaggeration by entrepreneurs

competing for scarce investor capital, and argue that investors are worse off with more

transparency. In a model of social media influencers faking their follower counts to online

advertisers, Anand et al. (2019) find that faking levels are unaffected, but the advertiser’s

payoff decreases with audit accuracy.

A large body of research, both academic and applied, focuses on better fraud detec-

tion methods and technologies under different scenarios (e.g. Bolton and Hand, 2002).

However, as we demonstrate in our case, there exist scenarios where more accurate de-

tection can actually backfire for the principal. In our case, many commonly assumed cost

functions (including quadratic cost) lead to backfiring. Here, increasing audit accuracy

or penalty imposed for fraud leads to an increase in faking levels, as well as a decrease in

the principal’s profit. In our model, the fraud itself is a signaling mechanism by which

the principal can screen the agent based on its underlying type (true metric). Introducing

audits distorts incentives, increases fraud, and harms the principal. Thus, under such cir-

cumstances, our model does not recommend auditing exaggerated claims of performance

metrics by entrepreneurs.

6



3 Model development

3.1 Methodological background

We adopt a contract-theoretic approach, where the agent can exaggerate its privately

known performance metric, i.e. its underlying type, to extract higher payment from the

principal. Such fraud is analogous to inflated insurance claims as modeled by Crocker

and Morgan (1998). However they assume that the agent’s claim is unverifiable and

demonstrate how an optimal contract must tolerate some degree of misrepresentation by

the agent. Crocker and Slemrod (2007) extend this model to CEOs reporting exaggerated

earnings to shareholders in annual reports.

Unlike Crocker and Morgan (1998), we do not assume that the agent can always

obfuscate performance metrics to evade auditors. As the examples in section 1 illustrate,

even the most meticulously planned fraud occasionally unravels. Thus, we develop our

model under the assumption that audits are imperfect but not completely ineffective,

and can detect fraud in the agent’s claims with a fixed probability. If the agent commits

fraud, he incurs a cost that rises progressively with the degree of misrepresentation of the

performance metric. If the agent does get caught, he incurs further costs, part of which

is paid back to the affected principal. The remaining penalties incurred could be fines

paid to regulatory bodies, loss of reputation, suspension of business, etc.

In section 3.2, we develop an optimal contract between a principal and agent, where

the latter can indulge in costly falsification of his type, with the possibility of getting

caught by a non-strategic third party audit. We frame our problem as one of optimal

control and derive its solution, followed by comparative statics in section 3.4 and an

illustration in section 3.5.

3.2 Model specification

We now outline the model in detail. Table 1 serves as a reference summarizing algebraic

notation used henceforth.

Insert table 1 about here

Consider a risk-neutral principal (investor or client) and a risk neutral agent (en-

trepreneur). The entrepreneur’s value is judged by its performance metric m (revenue,

video viewership, driver earnings, etc) which we assume as continuous: the higher the

value of the entrepreneur’s metric, the higher is the subjective value expected by the

investor, denoted by A(m) where A′(m) > 0. The metric m is private information to

the entrepreneur, who reports a possibly inflated value u(m) ≥ m. The investor observes
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only the reported performance metric u(m) and not its underlying true value m. The

reporting function u(m) = m indicates no falsification, while u(m) > m indicates falsifi-

cation by the entrepreneur. The investor is aware that the true metric m is distributed

in [mL,mH ] according to the probability density function f(m).

Falsification of the metric m imposes a cost denoted by c(u(m) − m) on the en-

trepreneur. This cost includes not just the cost of faking numbers, but also cover-up

costs, say bribing regulators, silencing whistle-blowers, etc. We assume that (a) this cost

is increasing in the degree of falsification, i.e. c′(z) > 0 ∀z > 0, (b) that falsification is

progressively more expensive i.e. c′′(z) > 0 ∀z ≥ 0, (c) no falsification entails no cost, i.e.

c(0) = 0 and (d) that the minimum cost is for no falsification, i.e. c′(0) = 0.

The entrepreneur is paid by the investor based on his performance metric. While one

would expect this payment to be a function of the reported metric u(m), we invoke the

revelation principle instead to look for only direct mechanisms where the entrepreneur’s

compensation v(m) is a function of its true metric m (Myerson, 1979). The principal-

agent game unfolds in the presence of a non-strategic third party audit, where the agent’s

fraud may be detected with an exogenous probability γ. We assume that the audit never

flags a non-fraudulent entrepreneur. If the entrepreneur is caught indulging in fraud,

his cost is multiplied by an exogenous factor δ > 1. Of this total cost δc(u(m) − m),

the component c(u(m) − m) is already incurred in falsification, and of the remaining

(δ − 1)c(u(m) − m), an exogenous fraction θ is returned to the investor as restitution.

The remaining fraction 1 − θ could either be fines to regulatory bodies, or reputation

costs to the entrepreneur. Figure 1 illustrates this.

Insert figure 1 about here

The principal’s profit can now be written as,

Π(u(m), v(m)) = A(m)− (1− γ)v(m) + γ{θ(δ − 1)c(u(m)−m)− v(m)}

= A(m)− v(m) + γθ(δ − 1)c(u(m)−m) (1)

with the principal’s objective being to maximize expected profit, expressed as,

max
u(m),v(m)

∫ mH

mL

Π(u(m), v(m))f(m)dm (2)

The agent’s payoff function is expressed as,

Y (u(m), v(m),m) = (1− γ)(v(m)− c(u(m)−m)) + γ(v(m)− δc(u(m)−m))

= v(m)− (1− γ + γδ)c(u(m)−m) (3)
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Note that the agent’s payoff function is independent of the fraction θ which is apportioned

between to the principal. Incentive compatibility for the agent dictates that,

Y (v∗(m), u∗(m),m) ≥ Y (v∗(m̂), u∗(m̂),m) ∀m̂ 6= m ∈ [mL,mH ] (4)

Furthermore, an optimal contract must satisfy the individual rationality constraint, such

that the agent’s payoff must exceed his outside option. We normalize this outside option

to zero, and thus have,

Y (u(m), v(m),m) ≥ 0 (5)

The principal’s optimization program is thus objective function (2) subject to the incen-

tive compatibility and individual rationality constraints of equation (4) and (5) respec-

tively. Note that the metric m is exogenous and not a decision variable that can be chosen

during optimization. The optimization problem is rather to choose the functions u(m)

and v(m), turning this into an optimal control problem where Y is the state variable,

with its equation of motion represented as,

dY

dm
=
∂Y

∂m
(6)

3.3 Optimal contract

We can now express the principal’s optimization problem with the following Hamiltonian,

H = Π(v, u)f(m) + λ(m)Ym + µY (v, u,m) (7)

where λ(m) is the co-state variable, u(m) is the control variable and µ is a Lagrange

multiplier. Using the Pontryagin maximum principle, Crocker and Morgan (1998) derive

the two following necessary conditions of optimality,

f · (Πu − ΠvYu/Yv) + λ(Yum − YvmYu/Yv) = 0 (8)

dλ

dm
= −f · Πv

Yv
− λYvm

Yv
− µ (9)

The above conditions lead to the following proposition,

Proposition 1. (Optimal contract) The optimal contract is characterized by:

F (m)

f(m)
=

(
c′(u(m)−m)

c′′(u(m)−m)

)
·
(

1 + γ(δ − 1)(1− θ)
1− γ + γδ

)
(10)

v(m) = (1− γ + γδ) ·
(
c(u(m)−m) +

∫ m

mL

c′(u(t)− t)dt
)

(11)
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Proof. See appendix A.1

Corollary 1.1. (Every type except mL is faking) The following hold true for the

optimal contract:

u(m) > m ∀m > mL (12)

u(mL) = mL (13)

Proof. See appendix A.2

The above proposition indicates that all agent types except the lowest (with m = mL),

over-report their metric. The logic behind this is that the faking acts as a type-signaling

mechanism. Given the costs of faking and the incentive structure in place, the agent

must over-report his performance metric to convey his true underlying metric, i.e. type.

This optimal level of faking u(m) is determined by equation (10). The optimal contract

dictates the principal to compensate the agent for this fraud, as indicated in equation

(11). While the above scenario may seem to be a completely losing proposition for the

principal, he can actually use equation (10) as a screening mechanism to ordinally rank

agents by their true underlying metric m. We illustrate this with an example in section

3.5.

Another interesting consequence of this setup, which our illustration shows, is the

possibility of several types actually reporting a metric that is beyond mH—the upper limit

of the support—and hence very obviously false. Such results have also been observed in

other contexts (e.g. Maggi and Rodriguez-Clare, 1995; Crocker and Morgan, 1998; Anand

et al., 2019). The principal also knows this, and tolerates it because of the bijective

mapping between m and u(m).

Implementability and sufficiency

Implementability requires,

∂

∂m

(
Yu
Yv

)
· du
dm

> 0 (14)

Since Yum = (1 − γ + γδ)c′′(·) and Yv = 1, the term ∂(Yu/Yv)/∂m becomes c′′(u(m) −
m) · (1 − γ + γδ) > 0. Thus u′ > 0 is necessary for implementability. Ym > 0 implies

sufficiency, i.e. the participation constraint binds only at m = mL leading to Y (mL) = 0;

and Y (m) > 0 ∀m > mL. This is ensured if c′ > 0.
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3.4 Effects of audit

With the optimal contract derived in proposition 1, we now investigate the effects γ,

δ and θ on the optimal level of exaggeration. Proposition 2 establishes how the audit

amplifies exaggeration.

Proposition 2. (Effects of audit parameters on faking) The following hold true

∀m > mL:

∂u/∂γ > 0 (15)

∂u/∂δ > 0 (16)

∂u/∂θ > 0 (17)

Proof. See appendix B.1

Proposition 2 illustrates how the audit distorts the signaling mechanism. It intensifies

exaggeration because the cost structure necessitates higher levels of exaggeration for the

agent to credibly signal his true type. In turn, the agent passes on the higher costs of

more exaggeration to the principal, as indicated in corollary 2.1. Further we show how

an audit may reduce the principal’s payoff in proposition 3.

Corollary 2.1. (Effects of audit parameters on agent’s payment) The following

hold true ∀m > mL:

∂v/∂γ > 0 (18)

∂v/∂δ > 0 (19)

∂v/∂θ > 0 (20)

Proof. See appendix B.2

Proposition 3. (Effects of audit parameters on principal’s payoff) The follow-

ing hold true ∀m > mL:

∂Π/∂γ < 0 (21)

∂Π/∂δ < 0 (22)

Proof. See appendix C
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3.5 Illustration

We now present a brief illustration of our model using a uniform distribution with support

[0, 100] and a quadratic cost function. The uniform distribution is specified as U(mL,mH),

such that f(m) = 1/(mH −mL) and F (m) = (m−mL)/(mH −mL).

The commonly used quadratic function c(z) = az2; a > 0 satisfies all the assumptions

of section 3.2. From equation (10) we have,

F (m)

f(m)
=

(
c′(u(m)−m)

c′′(u(m)−m)

)
·
(

1 + γ(δ − 1)(1− θ)
1− γ + γδ

)
⇒ m−mL = (u(m)−m)

(
1 + γ(δ − 1)(1− θ)

1− γ + γδ

)
⇒ u(m)−m =

(1− γ + γδ)

(1 + γ(δ − 1)(1− θ))
(m−mL)

The above expression for u(m) − m, i.e. the level of falsification, is thus a function

of m, γ, δ, θ. Figures 2 - 4 illustrate how the level of falsification increases with each

parameter, ceteris paribus.

Insert figures 2 - 4 continuously about here

4 Conclusion

We model the dynamics of costly exaggeration by entrepreneurs (agents) of a key perfor-

mance metric (agent type) to a potential investor or client (principal), by developing an

optimal contract between the two. We find that all agent types (except the lowest type)

find it worthwhile to exaggerate their performance metric, and the optimal reported met-

ric acts as a signaling mechanism to indicate their true underlying type. Interestingly, we

find that the principal is better off without imperfect audits under reasonable assump-

tions on the falsification cost. Thus, given that audits only increase exaggeration, we

recommend that regulators avoid this practice, however counter-intuitive it may seem.

This is because the audit interferes with the signaling mechanism, and any increase in ei-

ther audit accuracy or punitive penalties, actually results in making the investor (whom

regulators like the Securities and Exchange Commission or Federal Trade Commission

must protect) worse off.

Our results thus lend credence to the cynical Silicon Valley aphorism of “fake it till

you make it” with a sound economic explanation. While we find that exaggeration of

key performance metrics by entrepreneurs is unavoidable, this phenomenon does have a

silver lining for the investor. He can exploit the bijective mapping between the actual

12



metric m and reported metric u(m) to ordinally sort the entrepreneur by his underlying

type m.

Our model lends itself to an interesting extension, which we suggest as a promising

avenue for future research. It accounts for misreporting of only one performance metric.

In reality, some entrepreneurs may exaggerate multiple attributes. For example, Ther-

anos’s Elizabeth Holmes stands accused of exaggerating not only medical test accuracy,

but also of exaggerating revenue by a factor of 1,000 (Aiello, 2018). An investigation of

such multi-attribute exaggeration, using the approach of Frankel and Kartik (2019) is

possible.

In conclusion, we model an undesirable but all-pervasive scenario in the world of

entrepreneurship—that of performance metric exaggeration—and demonstrate how au-

dits meant to curtail this may backfire. Our findings are important to investors, policy

makers and entrepreneurship researchers.
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Appendices

A Proof of proposition 1 and corollary 1.1

A.1 Proof of proposition 1

We note that the participation constraint in equation (5) is slack (Y > 0) and hence

the corresponding Lagrange multiplier µ in equation (9) is set to zero. Using µ = 0 in

equation (9), we obtain:

dλ

dm
= f(m) (A1)

which along with the transversality condition λ(mL) = 0 yields:

λ(m) = F (m) (A2)

where F (m) =
∫ m
mL

f(t)dt. Substituting the value of λ in equation (8) we obtain

F (m)

f(m)
=

(
c′(u(m)−m)

c′′(u(m)−m)

)
·
(

1 + γ(δ − 1)(1− θ)
1− γ + γδ

)
Now to derive v(m) we note that,∫ Y

0

dY =

∫ m

mL

dY

dm
dm =

∫ m

mL

∂Y

∂m
dm

Y =

∫ m

mL

(1− γ + γδ) · c′(u(t)− t)dt (A3)

v(m) = (1− γ + γδ)

[
c(u(m)−m) +

∫ m

mL

c′(u(t)− t)dt
]

(A4)

A.2 Proof of corollary 1.1

We have now established equation (10), i.e.,

F (m)

f(m)
=

(
c′(u(m)−m)

c′′(u(m)−m)

)
·
(

1 + γ(δ − 1)(1− θ)
1− γ + γδ

)
For all m > mL, it is evident that the left hand side of the above equation is positive.

We know that c′′ > 0 by assumption and the term
(

1+γ(δ−1)(1−θ)
1−γ+γδ

)
is also positive. Thus

it must be that c′(u(m) − m) > 0 which is only possible if u(m) − m > 0. Thus

u(m) > m ∀m > mL, which is condition (12).
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By a similar logic, at m = mL, the left hand side of equation (10) is zero which is

only possible if u(mL)−mL = 0 or u(mL) = mL, which is condition (13).

B Proof of proposition 2 and corollary 2.1

B.1 Proof of proposition 2

First of all, we look at equation (10), defining the left (and right) hand side as Z:

Z ≡ F (m)

f(m)
=

(
c′(u(m)−m)

c′′(u(m)−m)

)
·
(

1 + γ(δ − 1)(1− θ)
1− γ + γδ

)
Thus,

dZ

dγ
= 0 =

∂Z

∂γ
+
∂Z

∂u

∂u

∂γ

⇒ ∂u

∂γ
= −∂Z/∂γ

∂Z/∂u
(A5)

Similarly,

∂u

∂δ
= −∂Z/∂δ

∂Z/∂u
(A6)

∂u

∂θ
= −∂Z/∂θ

∂Z/∂u
(A7)

Now, partially differentiating the right hand side of equation (10) with respect to γ, δ

and θ respectively, we have

∂Z

∂γ
=

−(δ − 1)θ

(1− γ + γδ)2

(
c′

c′′

)
< 0 (A8)

∂Z

∂δ
=

−γθ
(1− γ + γδ)2

(
c′

c′′

)
< 0 (A9)

∂Z

∂θ
=

−γ(δ − 1)

(1− γ + γδ)

(
c′

c′′

)
< 0 (A10)

Partially differentiating the right hand side of equation (10) with respect to u, we have

∂Z

∂u
=

(
1 + γ(δ − 1)(1− θ)

1− γ + γδ

)
·
(

(c′′)2 − c′c′′′

(c′′)2

)
(A11)

From equation (A11), (A8) and (A5), it is evident that ∂u/∂γ > 0 iff (c′′)2− c′c′′′ > 0. It

is easy to verify that any function that does not satisfy (c′′)2 − c′c′′′ > 0 is incompatible

with the assumptions of section 3.2. This is because c′(0) = 0 and c′′(0) > 0. At 0, we
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have (c′′)2 − c′c′′′ = (c′′)2 > 0.

Similar logic holds for ∂u/∂δ and ∂u/∂θ.

B.2 Proof of corollary 2.1

The expression for v(m) as given by equation (11) is,

v(m) = (1− γ + γδ) ·
(
c(u(m)−m) +

∫ m

mL

c′(u(t)− t)dt
)

We note that 1 − γ + γδ is an increasing function of both γ and δ. Furthermore, from

proposition 2, u(·) is clearly an increasing function of γ, δ and θ. Also, given that c′ > 0

and c′′ > 0, it is evident that both c(·) and c′(·) increase with γ, δ and θ. Therefore, it is

trivially true that v(m) also increases with each of these parameters.

Nevertheless, given that we require formal expressions of ∂v/∂γ and ∂v/∂δ to prove

proposition 3 (see appendix C), we will still derive these and prove explicitly that these

are negative. We use the Leibniz integral rule to partially differentiate equation (11) with

respect to γ to get,

∂v(m)

∂γ
= (δ − 1)

(
c(u(m)−m) +

∫ m

mL

c′(u(t)− t)dt
)

+(1− γ + γδ)

(
c′(u(m)−m)

∂u(m)

∂γ
+

∫ m

mL

c′′(u(t)− t)∂u(t)

∂γ
dt

)
(A12)

It is easy to verify that the above is positive, because ∂u(·)/∂γ is positive. Similarly we

partially differentiate equation (11) with respect to δ to get,

∂v(m)

∂δ
= γ

(
c(u(m)−m) +

∫ m

mL

c′(u(t)− t)dt
)

+(1− γ + γδ)

(
c′(u(m)−m)

∂u(m)

∂δ
+

∫ m

mL

c′′(u(t)− t)∂u(t)

∂δ
dt

)
(A13)

which is also positive, because ∂u(·)/∂δ is positive. Finally we partially differentiate

equation (11) with respect to θ to get,

∂v(m)

∂θ
= (1− γ + γδ)

(
c′(u(m)−m)

∂u(m)

∂θ
+

∫ m

mL

c′′(u(t)− t)∂u(t)

∂θ
dt

)
(A14)

which is positive because ∂u(·)/∂θ is positive.
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C Proof of proposition 3

We recall equation (1), the principal’s payoff, which is,

Π = A(m)− v(m) + γθ(δ − 1)c(u(m)−m)

Partially differentiating the above with respect to γ, we have,

∂Π

∂γ
= −∂v(m)

∂γ
+ θ(δ − 1)c(u(m)−m) + γθ(δ − 1)c′(u(m)−m)

∂u(m)

∂γ

Substituting equation (A12) above and simplifying, we have,

∂Π

∂γ
= −(1− θ)(δ − 1)c(u(m)−m)

−{(1− γ) + γδ(1− θ) + γθ} c′(u(m)−m)
∂u(m)

∂γ

−(δ − 1)

∫ m

mL

c′(u(t)− t)dt

−(1− γ + γδ)

∫ m

mL

c′′(u(t)− t)∂u(t)

∂γ
dt (A15)

It is easy to see that the above expression is negative because ∂u(·)/∂γ > 0.

We now partially differentiate equation (1) with respect to δ and repeat the above

exercise by substituting equation (A13) to obtain,

∂Π

∂δ
= −∂v(m)

∂δ
+ γθc(u(m)−m) + γθ(δ − 1)c′(u(m)−m)

∂u(m)

∂δ
= −γ(1− θ)c(u(m)−m)

−{(1− γ) + γδ(1− θ) + γθ} c′(u(m)−m)
∂u(m)

∂δ

−γ
∫ m

mL

c′(u(t)− t)dt

−(1− γ + γδ)

∫ m

mL

c′′(u(t)− t)∂u(t)

∂δ
dt (A16)

It is easy to see that the above expression too is negative because ∂u(·)/∂δ > 0.
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Why we do not include ∂Π/∂θ in proposition 3

We partially differentiate equation (1) with respect to θ and repeat the above exercise by

substituting equation (A14) to obtain,

∂Π

∂θ
= −∂v(m)

∂θ
+ γ(δ − 1)c(u(m)−m) + γθ(δ − 1)c′(u(m)−m)

∂u(m)

∂θ
= γ(δ − 1)c(u(m)−m)

−{(1− γ) + γδ(1− θ) + γθ} c′(u(m)−m)
∂u(m)

∂θ

−(1− γ + γδ)

∫ m

mL

c′′(u(t)− t)∂u(t)

∂θ
dt (A17)

The above expression is negative if and only if the right hand side is negative. This

imposes some extra constraints on the parameters and/or the cost function, but it is not

very intuitive.
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Term Description
m True performance metric (agent type)
f(m), F (m) Probability density and cumulative distribution function of m
[mL,mH ] Support of the probability density function f
A(m) Principal’s subjective valuation of agent based on m
u(m) Agent’s reported metric (type)
v(m) Payment to the agent
c(u(m)−m) Cost of falsification
Π(·) Principal’s payoff
Y (·) Agent’s payoff
H Hamiltonian
λ(m) Co-state variable
µ Lagrange multiplier
γ Probability of successful detection of agent’s fraud
δ Penalty factor
θ Fraction of agent’s incurred penalty going to principal

Table 1: Model notation
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Probability γ
(fraud detected)

Probability (1-γ)
(fraud not detected)

Payment received
from principal, 

v(m)

Cost of 
falsification, 
c(u(m)-m)

Payment received
from principal, 

v(m)

Cost of 
falsification, 
c(u(m)-m)

Additional 
penalty, 

(δ-1)c(u(m)-m)

Total cost incurred by agent, 
δc(u(m)-m)

Principal’s share, 
θ(δ-1)c(u(m)-m)

Reputation costs + 
regulator’s share 

(fines),
(1-θ)(δ-1)c(u(m)-m)

Figure 1: An illustration of the agent’s payoffs and costs when not caught and when caught
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Figure 2: Faking level u(m)−m versus m for different levels of γ. Here θ = .1 and δ = 2
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Figure 3: Faking level u(m)−m versus m for different levels of δ. Here θ = .1 and γ = .4
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Figure 4: Faking level u(m)−m versus m for different levels of θ. Here γ = .4 and δ = 2
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