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Abstract

Researchers in the past dealt with the optimization problem

relating to deterministic opportunistic replacement problem.

Complete solutions were obtained for a two component situation

for both finite and infinite time horizon. For the multi-

component opportunistic replacements with fixed time horizon,

a mixed integer linear programming formulation is given in the

literature. In this paper, a simplified alternative approach

to solving the two-component problem is given.

A Dynamic Programming approach to solve the two-component

problem which can be extended to K-component situation is also

discussed. The mixed integer programming formulation is

modified and computational advantages are discussed.
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Scope and Purpose

Opportunistic replacement problem considers a system

consisting of failing components which incur extensive

maintenance costs upon failure. These costs relate to

shutting down and disassembly of the entire system. When

the system is disassembled for regular maintenance, it is

possible to replace components at no additional

maintenance cost. Mathematical techniques are used to

find a replacement policy which trades off the remaining

useful life of a still operational component in exchange

for avoiding the high maintenance cost associated with

component failure. The purpose of this paper is to

develop a simple solution method for a two component

deterministic opportunistic replacement problem.

For a finite horizon multicomponent deterministic

situation, two different formulations, viz. a dynamic

programming and a modified mixed integer programming

formulation are suggested. Computational advantages and

limitations are also discussed.
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1. INTRODUCTION

Earlier researchers dealt with the problem of

Multi-Component Deterministic Opportunistic Replacement

Problem [ 6 ]. The problem was originally introduced by

Jorgenson and Radner [ 8 ] for stochastically failing

components which incur extensive maintenance cost upon

failure. An extension of the problem was studied by

Epstein and Wilamowsky [ 3,4,5,6 ]• A new variation of

the problem was introduced by George et.al [ 7 ] • They

considered a purely deterministic opportunistic

replacement problem. Epstein and Wilamowsky [ 6 ] made

an analysis of the two component deterministic problem•

They showed that for a two component problem with

different life-limits, each individual scheduled

replacement point offers potential opportunity for

monetary saving. They proved that in this deterministic

situation, only a limited number of the possible

replacement points need be considered. An algorithm to

generate these points was also given. Dickman, Epstein
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and Wilamowsky [ 1 ] presented a mixed integer linear

programming formulation for any n-component system.

However, the problem size becomes large.

In this paper, a simpler method for finding the optimal

replacement point for the two component problem is given.

A dynamic programming formulation of the problem for two

component and three component situations are given. This

can easily be extended to K-component situation.

2. PROBLEM FORMULATION FOR A 2 COMPONENT SITUATION

The formulation is as per [ 6 ] with some modification.

Let us denote the two components by A and B.

Let

LA : Assigned life limit for component A

LB : Assigned life limit for component B

If LA = LB , then the solution is trivial.

Without loss of generality, assume that LA < LB .

It was observed by Epstein and Wilamowsky [ 6 ] that

premature replacement, if warranted, is limited to

scheduled B replacement points or scheduled A replacement

points immediately preceding B replacement points. They

also proved that only a fraction of the eligible points

need be considered and presented an algorithm for their

determination. In this paper the nature of the optimum

solution is studied. It is shown that the time difference

between a A-replacement po^nt and the immediately

following B-replacement point is crucial in the

determination of the optimal joint replacement at a

A-replacement point. Similarly it is shown that the time
2



difference between a B-replacement point and the

immediately following A-replacement point is crucial in

the determination of the optimal joint replacement at a

B-replacement point. This reduces to a comparison of a

few ratios to determine the optimal replacement point if

the joint replacement is at a A-replacement point.

Similarly a comparison of few ratios will give the

optimal replacement point if the joint replacement is at

a B-replacement point- The least cost associated with

these optimal points will give the optimal policy.

Let
L = L.C.M of ( LA , LB ) and

NA = L/LB and NB = L/LA.

Then, NA and NB are relatively prime.

Also,

Total cycle time = L

No. of A's in cycle = NB

No. of B's in cycle = NA

Total No. of replacement points = NA + NB- 1.

It is assumed that both A and B are installed at

time 0 and this is not included in the count of the

number of replacements. This is because we are

considering an infinite horizon problem.

If LB is an integral multiple of LA , then the

solution is obviously trivial.

Let r be a positive integer such that

r LA < Ln < (r+1) LA.



Let

CA : Cost of replacing a single A

CB : Cost of replacing a single B

C : Cost of disassembly for single or double
replacement

x : No, of A's used from the start of the
cycle ( 1 < x <NB). The component that we
start at time 0 is not counted.

y : No. of B's used from the start of the
cycle( 1 < y < N A). The component that we
start at time 0 is not counted.

ATX : Time differential between the xth A and the
next B, ( 0 < ATX < LB ). Note that ATX is
0 only when x=NB

ATy : Time differential between the yth B and the
next A, ( 0 < ATy < LA ). Note that ATy is
0 only when y=NA

fx(x): the y value that immediately follows x and
equal to ( x LA + ATX ) / LB . Obviously

fx(x) = |_ x LA / LB J + 1 for x < NB where

[ J indicates the integral part. For x=NB
fx(x)=NA. Note that ATX >0 for x < NB and
ATX = 0 for x = NB

f2(y)* the x value that immediately follows y and
equal to ( y LB+ ATy ) / LA . Obviously

f2(y) = [ y LB / LA | + 1 for y < NA and
f2(y) = NB for y = NA. Note that ATy >0 for
y < NA and ATy = 0 for y = NA

C(x) : cost per unit time for a double removal at
xth A and equal to

(x CA + f,(x) CB + [x + fx(x) - 1] C)/(x LA)

D(y) : cost per unit time for a double removal at
ytb B and equal to

(Y CB + f2(y) CA + [y + f2(y) - 1] C)/(y

Here we can consider two alternative objectives. The

first one is to minimize the discounted cost of

replacements over an infinite time horizon. The other one
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which was dealt by Epstein and Wilamowsky [6] is to

minimize the average replacement cost per unit time

without discounting. Here we consider the second

alternative.

Since every double removal initiates an identical cycle,

the replacement point yielding the minimum cost per unit

time within a single cycle is the optimal replacement

point and determines the overall cost per unit time for

the entire system. Here we are not discounting the cost.

The objective is to find the x or y that yields the

minimum of all possible C(x) and D(y) values. Epstein and

Wilamowsky [ 6 ] detailed a method of reducing the number

of possible optimal points and arrive at the optimal by

comparing the costs at these possible optimal points. An

alternative method of solution which is simpler, is given

below.

3. ALTERNATIVE METHOD OF SOLUTION

As already mentioned, if LB is an integral multiple of LA,

then the solution is trivial. Hence we assume that LB is

not an integral multiple of LA .

In section 3.1, we find the conditions for local optimum

for C(x) and D(y). In section 3.2, we find the conditions

for the global optimum for C(x) and D(y). Clearly, the

minimum of these two global optimums will be the optimum

solution for the problem.



The cost function C(x) is

(x CA + f,(x) CB + [x + f,(x) - 1] C) /(x LA)

= ((C+CA)/LA) + P(x) where

P(x) = ((C+CB)/LJ (fx(x)/x) - (C/LJ /x

The cost function D(y) is

(Y CB + f2(y) CA + [y + f2(y) - 1] C) / (y LB)

= ((C+CB)/LB) + Q(y) where

Q(y) = ((C+cA)/LB) (f2(y)/y) - (C/LJ /y

3.1 CONDITIONS FOR LOCAL OPTIMUM

The necessary and sufficient conditions for a point x

such that 1 < x < NB to be a local optimum for C(x) are

P(x+1) - P(x) > 0 and

P(x-l) - P(x) > 0.

>0 if a n d only if x f x(x + l) -(x+1) f1(x) z 0

since x and fi(x) are integers and C/(C+CB) is positive

and less than 1 .

Similarly, it follows that

1

>0 if a n d only if x f1(x 1) (x-1) fx(x) > 1



Thus the necessary and sufficient conditions for the

occurrence of a local optimum at x where 1< x < NB are

x M x + 1 ) - (x+1) fx(x) > 0 (1)

x fjx-l) - (x-1) fjx) > l. (2)

Note: Since LA < LB , there can be utmost one

B-replacement point between two successive A-replacement

points. Hence, 0 < fx(x+l) - fx(x) < 1 and

0 < f,(x) - fx(x-l) < 1.

Now we will find the conditions for local optimality for

the end points x = 1 and x = NB.

A local optimum at x = 1 occurs if and only if

P(2) - P(l) > 0. This gives us the condition

1 f,(2) ~ 2 fjl) > 0,

i.e. fa(2) > 2 as fx(l) = 1 for LA < LB.

If LA < (1/2) LB, then fx(2) = 1 and hence a local optimum

cannot occur at x=l. If LA > (1/2) LB , then a local

optimum will occur at x = 1.

A local optimum at x = NB occurs if and only if

P(NB-1) - P(NB) > 0.

This gives us the condition

NB f^N^l) - (NB-l)f1(NB) > l.

This condition is always satisfied since

f1(NB-l)=f1(NB)=NA for LA < LB

Thus a local optimum always occurs at x = NB.



Result 1:

For 1 < x < NB , necessary and sufficient conditions for a

local optimum at x are

fjx+l) = fx(x) + 1 and

fjx-l) = fx(x)

Proof: Conditions for local optimality are given in

equations (1) and (2). Condition (1) is

fjx+l) > ((x+l)/x) fx(x) >fjx) as ((x+l)/x) >i.

As f1(x-\rl) is either fa(x) or f!(x)+l, necessarily

fjx+l) = f1(x)+l (3)

The second condition for local optimality given by

equation (2) can be written as

x {f2(x-l) - f,(x)} + f2(x) - l > 0. (3a)

Note that fx(x) = [ x LA / LB J + 1 < x + 1 as LA < LB .

Also, f1(x) is either fjx-l) or fjx-l) + 1.

If fx(x)= fx(x-l) + 1, then the above inequality (3a)

gives

- x + fx(x) - 1 > 0,

i.e. fx(x) > x+1 which is a contradiction. Hence,

f,(x) = f.(x-l) (4)

These conditions for optimal x are diagrammatically

represented below:

(f,(x)-l)LB f,(x)LB (fi(x)+l)L»
I I I I I I

(x-l)LA xLA (x+l)LA

Between two B-replacement points, the last A-replacement

point is a candidate provided there are at least two

A-replacement points in that interval.
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The global minimum for C(x) will be among the

A-replacement points x which satisfy the above

conditions.

A similar analysis for finding the conditions for local

optimum of D(y) shows that

i. a local optimum at y=l occurs if and only if

(LA/2) < LB - r LA

ii. a local optimum always occurs at y = NA

iii. For 1 < y < NA , a necessary and sufficient condition

for a local optimum at y is

f2(y+D = f2(y) + r + 1 and

fa(y-l) = f2(y) - r

For detailed derivation, the reader may refer to Rao and

Rao [ 9 ].

The global minimum for D(y) will be among the

B- replacement points y which satisfy the above

conditions•

3.2 CONDITIONS FOR GLOBAL OPTIMUM

Conditions for Global Optimum for C(x):

Let xx and x2 be two local optimal for C(x) such that

1 < x, < x2 < NB.

Then if C( x2 ) - C(x2 ) > 0, obviously we can drop point

x2 from consideration. This condition after simplification

reduces to

x2 fx(xx) x1fl(x2) > c_

x7'-x1 ' " C « C P



Similarly/ if

x2 f1(x1)-xlf1(x2)
x2-xl C+CB

then, we can drop x2 from consideration of global optimal

Thus, for any sequence of points x such that 1 < x < NB

which satisfy the condition

(f1(x)-l)LB< (x-1) LA < x LA < f,(x) LB< (X+1) LA

and the end points x = 1 and x = NB , we need to compare

the successive points x which satisfy the condition for

local optimal, the quantity,

(x2 fx(xx) - xx fjx2))/(x2- xj with C/(C+CB)

and then select one of the points. Note that x=NB will

always be selected and x=l will be dropped from

consideration if LA < (1/2) LR . This will lead us to the

global minimum of C(x). The comparison can still be

simplified as shown below:

Let C* = C/(C+CB). We drop xx from consideration if

x2
x2-x1

As fa(x) = ( x LA + ATX ) / LB , the above condition for

dropping xx from consideration is

( AT /T "l — P* / AT /T ^ — P*

1 A2

This reduces to finding the minimum of

(ATxl/Ln) - C*

10



Suppose the minimum is attained at x=x* . Then C(x*) is

the global minimum for C(X).

Conditions for global optimum for D(y):

Similar analysis could be done to find the global optimum

for D(y) as given in [ 9 ]. It is shown that to find the

global minimum of D(y) we need to find the minimum of

(ATyi/LA) - C"

Yi

where C** = C/(C+CA).

Suppose the minimum occurs at y=y* . Then D(y*) is the

minimum.

The minimum of C(x*) and D(y*) is the optimal double

replacement point.

EXAMPLE

This method of solution is applied to the example given

by Epstein and Wilamowsky [6] They illustrated the

algorithm with four examples taking LA = 7 and I* = 11.

The relevant costs taken for the 4 examples and the

optimal solutions obtained are given below:

Example CA

i
ii
i n
iv

1
1

10
2

cB
1

10
2

10

c
10
3
1
1

Optimal

at
at
at
at

7
11
21
77

(x= 1)
(y=ll)
(x= 3)
(x=ll,y=7)

11



Using the same values for the parameters , the above

simple procedure is applied and the results obtained are

tabulated below:

Example j C*
no. {

i j 10/11

ii

iii

iv

3/13

1/3

1/11

C " j x*

lo/n ; l

3/4

1/11

1/3

3

3

11

y*

1

1

5

7

C(X*)

12/7

35/21

38/21

109/77

c(y*)

23/11

18/11

102/55

109/77

Optimal |

12/7 at x*=l

18/11 at y*=l

38/21 Ct X*=3

109/77 at x*=ll
and y*=7

5. DYNAMIC PROGRAMMING FORMULATION

For a K component situation with a finite planning

horizon T, the problem can be formulated as a dynamic

programming problem. Assume that the revenue or cost

accrued from components which still have a useful life at

the end of the planning period T is 0. The approach to

Dynamic Programming formulation essentially remains the

same even if the revenue accrued is not ()•

Since the planning horizon T is fixed, minimizing the

average cost per unit time is equivalent to minimizing

the total cost for T periods. The Dynamic programming and

Integer programming formulations given in this section

and the next section minimize the total cost for T

periods. The formulations in this section and the next

section can easily be adapted to minimize the discounted

cost over the planning horizon T,

Let the periods be numbered 1,2,3,...,T.

We will formulate a two component situation and indicate

the changes necessary for the three component situation.

12



This can easily be extended to a K- component situation.

For a two component situation, let ni and r\2 stand for the

elapsed lives of components A and B at the end of a

period- In the Dynamic Programming formulation, the

stages are the periods and the states are the elapsed

lives of components A and B. At the end of any period, if

the elapsed lives of both the components are strictly

less than their useful lives, then we do not replace any

components. We replace one or both only when at least one

of the components reaches the end of its useful life.

Let us define

f j (ni, T\2 ) = minimum cost of the optimum

policy when the system is in

state (ni, n2) and there are j

more periods to go;

-} = o 1 ? T

The initial conditions are

fo (ni, n2 ) = 0 for all ni and n2-

The recursive equation for j=l,2,....,(T-l)is

f j+l(ni, 112 ) = f j (ni+1, n2HL ) if ni < LA and n2 < L B

=Min { c+ CA + fj (1,112 + 1) , C + CA + C B

+ f j(l,l) } if ni = LA and n2 < L B

= Min { C+ CB + fj (ni+1,1), C+ CA + C B

+ f j(l,l) } if ni < LA and n2 = LB

= c + cA + cB + f j (i,D

if ni = LA and n2 = LB

fT ( LA, LB ) gives the minimum cost.

A three component situation can be formulated in a similar

way. In this case we have to consider the following

options:

13



At the end of any period we do not replace any components

if the elapsed lives of all three components are strictly

less than their useful lives. If exactly one of the

components reach the end of its useful life at the end of a

period, then we have to consider the following three

options:

i. replace only that component which reached its
useful life

ii. replace in addition, one more component which has
not yet reached its useful life; there are two
possibilities in this case depending on the
component (that has not yet reached its useful
life) chosen for replacement

iii. replace all three components

If exactly two components reach the end of their useful

lives at the end of a period, then the options are replace

only these two components, or all the three components. If

all three components reach their useful lives at the end of

a period, then we have to replace all three components.

For the K-component case also the number of stages is equal

to T which is the number periods. However, the number of

possible states at each stage is given by

K
n Li where Li is the life of the component i
i=l

For each possible state, the recursive equation will

require the minimum of at most 2̂ -1 values. Thus, if K is at

most say 15, and if the number of states is not very large,

the dynamic programming formulation can be applied. We

expect this to be the case for most practical problems.

14



INTEGER PROGRAMMING FORMULATION

In order to formulate the problem as an integer programming

problem, the following notation is used:

Let K = number of components

T+1 = number of periods

Cj = cost of replacing a single component j ;
j = 1, 2 , . . . , K

Co = maintenance cost for replacing one or nore
components

Lj = life of component j; j = 1,2,...,K
assumed to be an integer

Define

Xi:) = 1 if component j is replaced at the end of
period i

= 0 otherwise

Yi = 1 if there is any replacement at the end of
period i

= 0 otherwise

Note that no replacement is required at the end of period
T+1-

Now the integer programming formulation as given by

Dickraan et al [ 1 ] is

K T T
Minimize 2 S ^ X^ + S Co YA

j=l i=l i=l

subject to

S Xkj > 1 ; i = 1,2, . . . ,T - Lj +1
k=i j = 1,2, ... , K

K
2 Xtj - K Yi < 0 ; i = 1,2,. .., T (5)
j=l

Yi = 0 or 1 ; i = 1, 2, . . . , T

0 < X n < 1 for all (i, j) .

Some simplifications to this formulation are suggested in

[ 1 ]. For instance, there will be no replacement at the

15



end of periods which are not non-negative integer linear

combinations of Lj ; j = 1,2,...,K. For given instances of

the problem, this may reduce the number of variables and

constraints considerably. But as pointed out in [1], if

K = 3 , L i = 3 , L 2 = 4 and L3 = 5, then all periods from 3 to

T are potential replacement periods. In this case, clearly

Xij= 0, i = 1,2 and j = 1,2,3; X3i= 1; Yi = 0 for i=l, 2 and

Y3 = 1. If T = 100, there will be , not including

fixed variables, 293 continuous variables, 97 integer 0-1

variables. In this case, there will be 385 constraints, not

counting the redundant constraints.

Constraint set (5), together with the objective function

coefficient of Yi , is a compact way of ensuring that the

maintenance cost for replacement is incurred in period i if

any one of the components is replaced in that period. But

from a computational point of view, it is better to replace

constraint set (5) by

Xij- Yi < 0 ; i = 1,2,...,T (6)

j = 1, 2,...,K

This increases the number of constraints by (K-l)T. But,

these constraints are strong inequalities and the linear

programming bound obtained by using constraints (6) is

typically much better than the linear programming bound

obtained by using (5).

7. COMPUTATIONAL RESULTS

Several finite time horizon problems were solved by dynamic

programming as well as by integer linear programming. In

16



all 42 problems were solved using dynamic programming and

10 problems were solved using integer linear programming.

Table 1 gives the objective function value and the time in

seconds for a 3 component situation. C is the cost of

disassembly for single, double and multiple replacement

and Ci is the cost of replacing a single component i;

i=l,2,3. Li is the assigned life limit for the ith

component; i=l,2,3. T stands for the time horizon.

Ten problems were solved by integer linear programming

using the formulation suggested by Dickman, Epstein, and

Wilamowky (DEW) and using our fisriagl2XThe

software used was HYPER LINDO .

Table 2 gives for ten sample problems

i. the total time

ii. the number of pivots required to solve the problems by

each of the methods

iii. the optimal objective function values

iv. number of pivots that were completed when the integer

solution that was obtained is actually optimal but not

certified to be so

v. the objective function value ( LP lower bound)

obtained by solving the linear programming relaxation

vi. the number of pivots required to solve the LP

relaxation

vii. the objective function value of the best integer

solution ( IP upper bound ) found while solving the LP

problem

17



viii. the number of pivots completed when the best IP

solution was found.

A study of the tables shows that the three component

problem can be solved efficiently by dynamic programming.

For this study, the values of Li, L2, and L3 are taken as 3,

4, and 5 respectively. The time periods are taken as 22,

27, and 32. Problems are solved for various scenarios

assigning various values to the cost parameters C, Ci, C2,

and C3 .

The time taken to arrive at an optimal solution is

consistently lower for dynamic programming formulation

compared to integer programming formulation. For example,

problem number 1 considered T equal to 22, the D.P.

solution is obtained in 25 seconds whereas the D.E.W

formulation has taken 34 minutes and R.R. formulation has

taken 2 minutes. For prblem 10, the D.P. solution is

obtained in 27 secondshe D.E.W formulation has

taken more than 150 minutes and R.R. formulation has taken

7 minutes.

Our formulation of the integer programming problem is more

efficient than the DEW formulation.

18



Table 1

D Y N A M I C PROGRAMMING : C O M P U T A T I O N A L SUMMARY

L I V E S O F C O M P O N E N T S : L 1 = 3 , L 2 = 4 / L 3 =

P. NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

c,

1

1

1

3

3

3

2

2

2

1

1

1

1

1

1

1

1

1

3

3

3

2

2

2

1

1

1

c2

2

2

2

1

1

1

3

3

3

2

2

2

2

2

2

2

2

2

1

1

1

3

3

3

2

2

2

c3

3

3

3

2

2

2

1

1

1

3

3

3

3

3

3

3

3

3

2

2

2

1

1

1

3

3

3

C

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

T

22

22

22

22

22

22

22

22

22

27

27

27

32

32

32

50

50

50

50

50

50

50

50

50

100

100

100

OBJ.
Value

64

52

34.5

68

57.5

39.5

69

58

38.5

81

66

42.5

96

78

52

155

126.5

83.5

160

136

93.5

160

136

91.5

315

256.5

169.5

TIM̂ l
(SEC)

25

25

25

25

25

25

25

25

30

30

30

30

35

35

35

40

40

40

40

40

40

40

40

40

80

80

80

contd,
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Table 1 (Contd)

DYNAMIC PROGRAMMING : COMPUTATIONAL SUMMARY
LIVES OF COMPONENTS: Lx = 3, L2 = 4, L3 = 5.

P. NO.

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

3

3

3

2

2

2

1

1

1

3

3

3

2

2

2

c2

1

1

1

3

3

3

2

2

2

1

1

1

3

3

3

c3

2

2

2

1

1

1

3

3

3

2

2

2

1

1

1

C

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

T

100

100

100

100

100

100

50

50

50

50

50

50

50

50

50

OBJ.
Value

328

278.5

191

329

279

188

95

79.5

54.5

97

82

59.5

96

81

58.5

TIME
(SEC)

80

80

80

80

80

80

105

105

105

105

105

105

105

105

105
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Table 2

INTEGER PROGRAMMING : COMPUTATIONAL SUMMARY
LIVES OF COMPONENTS: ^ = 3, L2 = 4, L3 = 5.

P.No.

1

2

3

4

10

11

12

13

14

15

T

22

22

22

22

27

27

27

32

32

32

D.E.W
TOTAL

TIME(MIN)
(PIVOTS)

34
(25843)

33
(29878)

12
(9931)

14
(12440)

> 150
( >15,587)

—

—

— -

R.R
TOTAL

TIME(MIN)
(PIVOTS)

2
(577)

3
(1135)

1
(410)

2
(739)

7
(3288)

10
(4223)

1
(349)

18
(5913)

20
(6599)

^A
(4524)

D.E.W
OBJ.
VALUE

(PIVOTS)

64
(15869)

52
(10263)

34.5
(674)

68
(1239)

81
(15,587)

- —

— -

R.R
OBJ.
VALUE

(PIVOTS)

64
(247)

52
(674)

34.5
(235)

68
(106)

81
(886)

66
(468)

42.5
(257)

96
(603)

78
(603)

^2
(2587)

D.E.W
LP

LOWER
BOUND

(PIVOTS)

50.33
(79)

42.33
(79)

31.66
(78)

55.33
(72)

62.66
(106)

52.66
(102)

39.33
(114)

76
(112)

64
(121)

(1120)

R.R
LP

LOWER
BOUND

(PIVOTS)

59.33
(135)

48.33
(159)

33.66
(146)

64.5
(142)

73.33
(188)

59 .83
(177)

41.83
(166)

87.25
(232)

71.33
(242)

(227 )

D.E.W
I?

UPFSR
BOUND

(PIVOTS)

None

None

None

None

None

None

None

None

None

R .R
IF

UFFER
BOUN D

(PIVOTS)

71
(79)

56.5

36.5
(97)

6b
(1C5)

88
( 1-0)

58
( 112 ;

4 6.5
(123)

•5 6

(153)

86.5
(115)

(3 53)
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