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On the Normalization of Dimensioned Variables

Abstract

We attempt to resolve the central dispute in recent debates on dimensional consistency of

economic and ecological variables in ecological economics (Mayumi and Giampietro, 2010;

Malghan, 2011; Chilarescu and Viasu, 2012; Baiocchi, 2012). Using canonical examples from

ecology and economics, we demonstrate that the well-established procedures of normalization

and nondimensionalization can be used to circumvent the technical problem of dimensional

consistency of ecological economics models. However, we also show how normalization does

not directly address the problem of mapping between cardinal and ordinal variables that is

the primary source of dimensional consistency problems in ecological economics.

Key words: Dimensional consistency, Normalization and nondimensionalization, Cardinal

and ordinal variables
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1. Introduction

The fundamental concern of ecological economics is to accurately model all aspects of

the economy-ecosystem interaction problem — the myriad ways in which the economic and

ecological systems are connected to each other. Almost all the monetary and physical vari-

ables used to describe economy-ecosystem interaction are dimensional in nature. The exact

cardinal value taken by dimensioned variables is contingent on the particular measurement

unit used. While several recent papers on the subject have pointed to the care required in

using dimensioned variables in ecological economics, there is little consensus on how dimen-

sional variables must be incorporated in economy-ecosystem interaction models (Mayumi

and Giampietro, 2010; Malghan, 2011; Chilarescu and Viasu, 2012; Baiocchi, 2012; Mayumi

and Giampietro, 2012). Mayumi and Giampietro (2010) inaugurated the debate by making

the provocative claim that many models in economics and ecological economics that make

use of transcendental functions like the logarithm are fundamentally flawed when these func-

tions use what are apparently dimensioned variables. Malghan (2011) claimed that several

popular biophysical sustainability indicators are dimensionally inconsistent because they

neglect the ‘qualitative residual’ that is the defining characteristic of any social-ecological

system (Georgescu-Roegen, 1971). In a brief comment, Chilarescu and Viasu (2012) showed

that the critique of a neoclassical production function (Arrow et al., 1961) on the basis of

it being dimensionally inconsistent does not take into account the fact that parameters of

a production function are dimensioned variables, too. Thus in the familiar Cobb-Douglas

production function of the form Y = F (K,L) = AKβLα, the parameter A has appropri-

ate dimensions (contingent on α and β) such that the function itself has the exact same

dimension as Y (Chilarescu and Viasu, 2012). In an earlier debate on a similar subject,

Folsom and Gonzalez (2005) had showed how parameters of the Cobb-Douglas production

function are assumed to have implicit dimensions required by dimensional consistency — in

response to the dimensional inconsistency claim made by Barnett-II (2003). Baiocchi (2012)

used examples from a variety of disciplines including the IPAT identity and Environmental

Kuznets Curve to critique the Mayumi and Giampietro (2010) claim, and also offered a
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critical historical literature review of dimensional analysis.

Unfortunately, the recent debate on dimensional consistency in ecological economics has

only helped to muddy the waters rather than provide a consistent framework for achieving

dimensional consistency while studying the economy-ecosystem interaction problem. It is

trivial to demonstrate that a logarithmic function cannot have dimensioned variables as its

argument. The more pertinent question is whether it might be possible to nondimensionalize

basic models of economy-ecosystem interaction that are of interest to ecological economists.

We illustrate the problem with the transcendental logarithm function that has been at the

center of the recent debate. In their rejoinder to Chilarescu and Viasu (2012), Mayumi

and Giampietro use the familiar Maclaurian expansion of ln(1 + x) and ln(1− x) to obtain

a polynomial expansion for the natural logarithm of any positive real number, z ∈ R+

(Mayumi and Giampietro, 2012, Eq-5):

ln(z) = 2

{

(

z − 1

z + 1

)

+
1

3

(

z − 1

z + 1

)3

+ . . .

}

(1)

It is straightforward to see that equation-1 cannot take a dimensioned z. Thus, Mayumi

and Giampietro (2012) argue that a regression model that includes a term like ln
(

V
L

)

used

by Arrow et al. (1961) in their labor-capital substitution model is problematic because the

logarithm takes on a dimensioned quantity (measured in US dollars per person-year of labor

unit, for example). Even in the 1960s, the classic paper by Arrow et al. (1961) had been

critiqued for not considering the dimensional consistency of production function specifica-

tions (De Jong, 1967; De Jong and Kumar, 1972; Cantore and Levine, 2012). However,

Mayumi and Giampietro (2010, 2012) ignore the fact that it is possible in theory to obtain

non-dimensional versions of V and L though the well-established process of normalization.

In principle, there should be no objection to using an expression like ln
(

V
L

)

if value added

(V ) and quantity of labour (L) are expressed as non-dimensional variables.

While Mayumi and Giampietro (2012) cite several examples from prominent economists

committing the apparent error of using dimensioned quantities in the logarithmic functions,
3



we demonstrate in Section-2 that normalization or nondimensionalizatoin can in principle

address this problem. We argue that this is a relatively minor technical point, and that

the more fundamental problem is that of representing the economy-ecosystem interaction

problem in a dimensionally consistent fashion. The remainder of this paper is organised as

follows: the next section will review normalization and nondimensionalization using canon-

ical examples from economics and ecology. It is not merely sufficient for an ecological

economics model to be dimensionally consistent. The key question is ‘whether or not the se-

lected dimensional choice for a given expression has an operational meaning or relevance for

the purpose [of ] analysis’ (Mayumi and Giampietro, 2012, emphasis in original). While this

was the true import of Mayumi and Giampietro (2010), the subsequent papers in the debate

have missed the forest for the trees by focussing exclusively on narrow technical dimensional

consistency. In Section-3 we discuss the limitations of normalization and nondimensional-

ization procedures. In particular, we show that it is nontrvial to normalize dimensioned

variables in analytically accurate models of economy-ecosystem interaction.

2. Normalization and Nondimensionalization

Using several canonical (and elementary) examples from ecology and examples, we

demonstrate in this section that normalization and nondimensionalization can address di-

mensional consistency issues in ecological economics. We examine the production function

and the consumer’s utility maximization problem from elementary microeconomics; the

logistic population growth model from ecology; and the normalisation of the Gaussian dis-

tribution in statistics.

2.1. Normalization of the Canonical Cobb-Douglas Production Function

The standard Cobb-Douglas production function for two inputs K and L can be repre-

sented as:

Y = AKβLα (2)
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Now consider a simple constant-returns version of equation-2 such that (β = 1 − α) and

(0 < α < 1; K,L > 0):

Y = AK1−αLα (3)

The central dimensional concern with the Cobb-Douglas function in equation-3 is that capital

(K), and labor (L) are measured in units that are different from each other, and from

the output (Y ). The constant A has a dimension that is contingent on the factor-share

parameter, α such that equation-3 is dimensionally consistent. To make this point of A

being dimensional even more explicit, equation-3 can be rewritten as:

Y = (AKK
1−α)(ALL

α) (4a)

A = AKAL (4b)

where the dimensional constants AK and AL are the so-called efficiency parameters. The

presence of these two dimensioned quantities makes analytical work and interpretation dif-

ficult. However, as shown by De Jong (1967) and Cantore and Levine (2012), equation-4 is

most easily normalised and rendered into a non-dimensional form. Consider a normalization-

point Y0 such that:

Y0 = (AKK
1−α
0 )(ALL

α
0 ) (5)

Now dividing equation-4 by equation-5 we readily obtain the non-dimensional version of the

constant-returns Cobb-Douglas function:

y = k1−αlα (6a)

y =
Y

Y0

; k =
K

K0

; l =
L

L0

(6b)

Any econometric models involving logarithms of the non-dimensional variables (y, k, l) will

pose no dimensional issues — for example a log-log model to estimate factor share, α. While

equation- 6 eliminates the dimensional constants, it offers no clarity on how to pick the nor-

malization point (Y0). In the context of a neoclassical economic growth model, it would be
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most intuitive to use the steady state value as the normalization point. While the choice

of normalization point is easily determined for the present problem, we will show below

how this can be non-trivial when studying the economy-ecosystem interaction problem. Be-

fore we take up another canonical example — the logistic growth equation from ecology to

illustrate the process of nondimensionalization (a homologue of the normalization process

discussed here) — it is important to note that more general production functions (CES, for

example) can be normalized in the same manner as the pedagogically simple case of Cobb-

Douglas discussed here (Klump and La Grandville, 2000; Klump and Saam, 2008; Cantore

and Levine, 2012; Temple, 2012).

2.2. The Logistic Equation

Consider the Logistic Equation that has been the pedagogical model of choice for students

of ecology from the time Alfred Lotka formalised the original Verhulst formulation in the

context of population growth of parasite colonies (Lotka, 1925). The simple population

growth logistic equation with a fixed carrying capacity, K and population growth rate, r

can be written as:
dP

dt
= rP

(

1−
P

K

)

; P (0) = p0 (7)

where P is the population at any time t; and the initial population is known such that

P (0) = P0. In the above equation, all the four variables are dimensional — P and K have

the dimension of [N] (number of individual plasmodium parasites in a colony for example);

t has the [T] dimension (time, measured in hours or minutes); and r has the dimension of

[T−1] (inverse time dimension, measured in per-hour or per-minute, persevering with the

plasmodium colony growth example). The units in which population and time are measured

are arbitrary and the parameter values in equation-7 will change if we went from measuring

time in hours to say, in minutes or years.

It is straightforward to nondimensionalize equation-7 so that it is invariant to particular

choices of units for population and time. This is achieved by scaling or normalizing the time
6



and population variables as:

τ =
t

(

1

r

) (8a)

x =
P

K
(8b)

dP

dt
=

d (Kx)

d (τ/r)
= rK

dx

dτ
(8c)

x0 =
P0

K
(8d)

The new variables x and τ defined in equation-8 are non-dimensional. Substituting equation-

8 in equation-7 we obtain the nondimensionalized form of of the logistic equation:

dx

dτ
= x (1− x) ; x(0) = x0 (9)

Unlike the original dimensioned variables, P , K, t, and r, the scaled non-dimensional vari-

ables x and τ can be used in any transcendental functions like the natural logarithm or the

exponential function. Like any nondimensionalization process, the scaled variables x and τ

are related to the intrinsic property of the physical phenomenon being studied. The scaled

population, x represents the population relative to the carrying capacity, K and is the in-

trinsic unit for measuring population in a simple logistic model.1 By measuring population

using non-dimensional x, we have scaled the problem so that equation-9 applies to a wide

variety of phenomena following the logistic growth pattern. Similarly 1/r that we used to

scale time, t to obtain the non-dimensional τ is the intrinsic unit for measuring time in the

context of population growth models. In an exponential growth model (the initial part of

the logistic growth curve when P ≪ K), the population grows by a factor of e in the time

1One could have also carried out the nondimensionalization of equation-7 by setting x = P/P0. A non-

dimensional x that is a scaled by the initial population is however not intrinsic to the system as the carrying

capacity (for a system with time invariant K).
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interval 1/r – an intrinsic unit for measuring time in any exponential growth problems.

Besides being an intrinsic representation, the scaled non-dimensional form of the logistic

equation is also the most parsimonious representation of the problem of carrying capacity

constrained growth.

2.3. The Standard Normal

Consider a random variable X that is distributed with mean µ and variance σ2 (X ∼

N (µ, σ2)). The Gaussian distribution for X, f(X) is given by:

f(X) =
1

σ
√
2π

e−
1

2
(X−µ

σ )
2

(10)

Any normally distributed variable can be expresses in terms of the standard normal, Z

(where Z ∼ N (0, 1)).

f(Z) =
1

√
2π

e−
1

2
Z2

(11)

As every beginning student of statistics is taught, for any random variable X ∼ N (µ, σ2),

Z = X−µ

σ
is a standard normal, or X−µ

σ
∼ N (0, 1). Besides helping with statistical inference,

this normalization process is of significance for our discussion about dimensioned variables.

X is a dimensioned variable (has the dimensions of [T] for example if X was measuring

some temporal phenomenon). However, the normalized variable Z is dimensionless as µ and

σ have the same dimensions as X –[T] in the present example. Thus, while X cannot be

used as an argument in transcendental functions, an expression of the form Y = ln(Z) can

be evaluated using equation-1. This normalization process is even more significant if one

considers the fact that the sum of a sufficiently large set of independent random variables

(with finite variance) will converge to a normal distribution (the Central Limit Theorem).

2.4. The Numéraire Good and Consumer’s Utility Maximization Problem

The most widely used example of normalization in economics – by a wide margin – is the

numéraire good. All prices in the pure theory of exchange are relative prices — prices that
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have been normalised by an appropriate numéraire. Money (dollars for example) is simply

the most common choice for the numéraire. In principle, any other commodity can be used

as a numéraire.

Consider an individual’s utility function defined by a Cobb-Douglas function (in a simple

two-good case) as follows:

U = X1−αY α (12)

Following our discussion in equation-5, we can write out a corresponding utility normaliza-

tion point as:

U0 = X1−α
0 Y α

0 ; X0, Y0 > 0 (13)

Dividing equation-12 by equation-13 we obtain a non-dimensional analogue of equation-6:

u = x1−αyα (14a)

u =
U

U0

; x =
X

X0

; y =
Y

Y0

(14b)

All three variables (utility, and the quantity of two goods that are consumed) in equation-14

are non-dimensional. While ln(U) is not defined, equation-1 can be used to evaluate ln(u).

Before we consider the consumer’s utility maximization problem, we write out the budget

constraint faced by the consumer:

PXX + PY Y ≤ M (15)

In equation-15, M is the disposable income available to the consumer; and PX and PY are

respectively prices (say in dollars per unit) of goods X and Y respectively. The budget

constraint when expressed using dimensionless x and y (instead of dimensioned quantities

X and Y ) can be written out as:

P̃Xx+ P̃Y y ≤ M (16a)

P̃X = X0PX (16b)

P̃Y = Y0PY (16c)
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In equation-16 P̃X and Ỹ0 are simply prices corresponding to normalised (and dimensionless)

quantities of X and Y . Money, measured in dollars ($) is the numéraire in both equations

(15) and (16). While PX and PY have the dimensions of dollars
quantity

, P̃X and P̃Y have dimensions

of dollars. One of the fundamental insights from consumer’s problem is that the neither

the budget set nor the budget constraint is affected by our choice of numéraire. Now, if we

normalize equation-16 using x as the numeraire good, we can rewrite the budget constraint

as:

x+ P̄Y y ≤ M̄ (17a)

P̄Y =
P̃Y

P̃X

(17b)

M̄ =
M

P̃X

(17c)

Every term in the budget constraint represented by equation-17 is dimensionless. As the

relative price P̄y and M̄ are dimensionless they can be used as arguments in a transcendental

function. Thus a regression equation that uses ln(M̄i) poses no dimensional problems (where

M̄i the disposable income of household i).

We can now write out the consumer’s utility maximization problem using equations (14)

and (17). The dimensionless Lagrangian is simply:

L =
(

x1−αyα
)

+ λ
(

x+ P̄Y y − M̄
)

(18)

By setting ∂L
∂x

= 0, ∂L
∂y

= 0; and eliminating λ we obtain the dimensionless first order

condition for the consumer’s utility maximization problem:

(

1− α

α

)

y

x
= −

(

1

P̄Y

)

(19)

Every single variable in equation-19 is dimensionless.
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3. Object Lessons

We have demonstrated using canonical examples from economics, ecology, and statis-

tics that normalization and nondimemsionalization can transform dimensional forms into

their dimensionless counterparts. The examples presented in the previous section show that

in theory, normalization can circumvent the objections raised by Mayumi and Giampietro

(2010) in the recent debate over dimensions. However, as Mayumi and Giampietro (2012)

point out in their rejoinder, the more relevant question is one of delineating the physical

basis for normalization. In the examples that we have considered, the nondimensionalization

procedure for the logistic equation or the construction of the standard normal statistic is

well-grounded. From the two economics examples we have considered, normalization using

an arbitrary choice of the numeraire good in the consumer problem is well-established. A

production function on the other hand must not only be dimensionally consistent but also

reflect the physical basis for production. Normalization only solves the technical problem

of dimensional consistency but the normalised representation of the production process is

only as good as the original dimensioned representation. An accurate physical representa-

tion of the production process has been one of the founding tenets of ecological economics

(Georgescu-Roegen, 1971; Kraev, 2002; Røpke, 2004).

As an illustration of the difficulties involved in selecting a normalization point in realistic

models of economy-ecosystem interaction, consider any model that includes a throughput

variable (Ẋ), say measured in kilograms per year so that Ẋ has the dimensions of [MT−1].

The throughput Ẋ cannot be an argument in any transcendental function. It is trivial to

normalize the throughput with some reference throughput, Ẋ to obtain a nondimensional

version ẋ = Ẋ

Ẋ
such that the normalized throughput, ẋ has no physical dimensions and can

be used as arguments in transcendental functions. Indeed, such a measure is homologous to

the rapidity measure used in in physics to characterize speed relative to the speed of light.2

Unlike relativity-physics however, the choice of reference throughput, Ẋ is not universal but

2In physics, rapidity, φ is defined as φ = tanh−1
(

v

c

)

where c is the speed of light.
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highly context dependent. A possible candidate for reference throughput is the maximum

sustainable throughput — the throughput above which the integrity of the underlying bio-

physical system in jeopardy. Consider an illustrative example — throughput of timber from

a forest. The maximum sustainable throughput is a function of the health of the underlying

forest ecosystem and will vary across both space and time. A tropical forest will necessar-

ily have a different maximum sustainable throughput from a temperate forest. Even in a

single location, maximum sustainable throughput will vary with time. The determination

of maximum sustainable throughput is a function of ecosystems as funds rather than stocks

(Georgescu-Roegen, 1971; Malghan, 2011).

The difficulty with determining an appropriate normalization point in the throughput ex-

ample above is related to a more general problem of mapping ordinal and cardinal variables

in a dimensionally consistent fashion. An accurate representation of the economy-ecosystem

interaction problem requires accounting for ecosystem as a fund in addition to ecosystem

as simply a collection of stocks. Unlike stocks and flows, funds and fluxes are ordinal and

subject to additional dimensional consistency constraints. The mapping between an ordinal

fund-flux space and the cardinal stock-flow space is at the heart of economics of ecosystem

services (Farley, 2012; Malghan, 2011). In the current debate of dimensioned variables in

ecological economics, the true import of the first salvo fired by Mayumi and Giampietro

(2010) was the fact that several empirical models are not careful about making the distinc-

tion between fund and stock functions of ecosystem. We would be missing the forest for the

trees if we focused the dimensions debate exclusively on technical aspects of normalization.

Normalization procedure, as demonstrated using elementary examples is well-established for

cardinal variables but the cardinal stock-flow space alone is inadequate for accurately mod-

elling the economy-ecosystem interaction problem. There is a need for ecological economics

to develop models of economy-ecosystem interaction that are at once realistic representation

of the problem and are dimensionally consistent.
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