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Abstract

The goal of this research is to study physicians’ prescription decisions and patients’

drug request behaviors jointly. We have developed a new zero-inflated multinomial

(ZiMNL) choice model to study patient drug request data with excessive zero requests

and a standard multinomial logit (MNL) model to capture physician prescriptions deci-

sions. The two models are joined by a flexible nonparametric multivariate distribution

for their random effects. We also adopt an analytically consistent expression for the

interaction effect in our non-linear and joint modeling framework. We apply our model

to a unique physician panel data set from the Erectile Dysfunction category. Our key

empirical findings include the following: (1) the triggering of drug requests by DTCA is

complicated with category level DTCA reducing patients’ probability of making drug

requests and drug specific DTCA driving drug requests for the advertised drug; (2)

patient characteristics may play a role in the impact of DTCA on drug requests and

the impact of patient requests on physicians’ prescription decisions; (3) patient drug

requests have a significant impact on physicians’ prescription decisions and patients

can be consistent with physicians in choosing a drug based on patient diagnosis level

and some unobserved factors; (4) there are significant correlations among physician-

level random effects that drive both patients’ drug requests and physicians’ prescription

decisions, which validates the joint modeling approach.

Key Words: zero-inflated, Bayesian, multinomial Logit, patient requests, physician pre-

scriptions, pharmaceutical market



1 Introduction

Pharmaceuticals prescribed by more than 800,000 licensed physicians in the United States

have generated tremendous benefits for patients by saving lives, increasing life spans, re-

ducing suffering, preventing surgeries, improving life quality, and shortening hospital stays.

In addition to improving public health, the U.S. pharmaceutical industry plays a critical

role in the economy. According to the 2007 Economic Census, an estimated 1,552 compa-

nies in the U.S. developed, manufactured and marketed drug and biological products. In

2011, the U.S. pharmaceutical market, the world’s largest, was estimated at $314 billion.1

Although the pharmaceutical industry is driven by R&D, the total marketing spending to

physicians and patients is much higher (e.g., the top 9 firms spend 2.5 times the amount on

marketing than on R&D). Among various marketing resources expended, detailing (personal

selling through representatives) targets the main decision maker, i.e., physicians, and is the

single largest expenditure. In 2011, the U.S. pharmaceutical industry spent $6.5 billion on

detailing.2 In the US, unlike many other countries, not only the physicians, but also the

patients are exposed to pharmaceutical firms’ promotion. After detailing, the second largest

expenditure is the direct-to-consumer advertising (DTCA), which targets the patients and

has grown explosively since the Food and Drug Administration (FDA) lifted the restriction

on pharmaceutical firms’ use of TV advertising in 1997. In 2011, the industry spent $3.9

billion on DTCA.2 DTCA is thought to have two effects on patient behaviors (Liu & Gupta

2011): (1) DTCA conveys medical information about health conditions and symptoms to

patients and may encourage them to seek professional medical help. As a consequence, it

may increase the number of patient visits for diagnosis, thus potentially expanding demand

for the whole drug category; (2) a typical DTCA often urges patients to talk to the doctor

about the advertised drug. Therefore DTCA may motivate patients to ask their physicians

for the advertised drug.

1Source: IMS Health, National Sales Perspectives, Dec 2011
2Source: IMS Integrated Promotional ServicesTM, 2011.



Although physicians have traditionally diagnosed diseases and decided which treatment

is best, this paternalist model, where the patients are mostly passive participants, is changing

because patients now have better access to medical information either via DTCA or other

channels, and they are increasingly choosing to assert their perspectives especially for chronic

diseases or lifestyle drug treatment. In particular, during medical visits patients are becoming

increasingly prone to requesting their physicians to prescribe specific prescription drugs.

By participating in the medical decision-making process, the patient exercises his or her

most fundamental rights as a human being from a humanistic perspective. There is also

a growing body of evidence showing that patients who are more informed and active have

not only better clinical outcomes, but they also have lower costs for health care (Hibbard

et al. 2013). On the other hand, concerns have arisen among medical professionals and

public policy makers on patients’ abilities in making optimal decisions about their care

and treatment along the shift from paternalism to collaboration model. Because of this

increasing social trend of patient involvement in medical decision making, it is important

to better understand the interrelation of patient drug requests and physician prescription

decisions in the context of promotion from pharmaceutical firms. More specifically, what

is the impact of DTCA on patient drug request behaviors? How do physician prescription

decisions get affected by patient drug requests? How can a patient’s informativeness about a

drug through DTCA and a physician’s enhanced knowledge about a drug through detailing

simultaneously motivate the prescription choices? Equally, it is imperative to understand

how different covariates pertaining to physicians and patients alike can interact with the

aforementioned interrelation. For example, are minority patients more responsive to DTCA

in generating drug requests? Are physicians less likely to accommodate drug requests by

minority patients? Although understanding all these questions is highly important to the

pharmaceutical industry, as well as to the public policy makers, little research has been

done on these topics, partially because of the lack of right behavior data at disaggregated

level. With a unique data set including drug request behaviors, patient characteristics,
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and physician prescriptions outcomes recorded at patient levels, we aim to bridge this gap.

However, several analytical challenges rarely appearing in isolation have complicated the

modeling of these important questions and therefore call for a comprehensive study of these

questions in a unified framework.

The first challenge arises from the existence of an excess of zeros in the physician-reports

on patent requests for brands of drugs. This excessive amount of zeros or zero inflations are

being contributed by across physician levels, where a large number of physicians from the

panel (≈ 53% in our data) never report patient requests, and within physician level, where

physicians report that many patients do not request any drugs (≈ 83%). Conceptually, no

request from a patient may come if that patient requests no brands or as a result of the

physician’s recording error. Spurious over-dispersion occurs because of the presence of these

extra zeros. Several studies have shown that if the data have indeed a large amount of zeros,

not accounting for them in the model will result in biased estimates of the model parameters.

As noted in Hatfield et al. (2012), in this kind of mixed data structure, “one should model

the zero/one dichotomy to separately account for the absence/presence of the measured

outcome.” A typical zero-inflated model is modeled by mixing a degenerate point mass at zero

and an appropriate distribution for the nonzero observation (Lachenbruch 2002, Rizopoulos

et al. 2008, Ghosh & Albert 2009, Hatfield et al. 2012, Zhang et al. 2006). Although most of

the zero-inflated data researches either model count data or positive continuous data, with

the exception of Hatfield et al. (2012) who models proportions, we develop a zero-inflated

multinomial model to better account for different aspects of the data.

The second challenge comes from the fact that patient decisions to request a particular

drug might not be independent of their physician prescription decisions. For example, a pa-

tient informed via DTCA is more likely to request the advertised drug just if he/she thinks

the drug is more useful for his/her condition through self-diagnosis. The self-diagnosis, if

correct, will then be coincident with the physician’s diagnosis. As a consequence, there is

a chance that patients are more likely to request drugs that physicians are more likely to
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prescribe to them. On the other hand, patients might be more likely to end up with a request

for a particular drug just because they figure out that physicians are prone to the drug from

the conversation. In other words, some patient characteristics or physician characteristics

may simultaneously drive patient request behaviors and physician prescription decisions,

therefore creating interdependence between these two behaviors. The interdependence, if

it exists and is not appropriately accounted for, will then result in an overestimate of the

impact of patients’ drug requests on physicians’ prescription decisions. We deal with this an-

alytical challenge from two dimensions. First, we control for observed patient characteristics

in both the patient request decision model and the physician decision model. Therefore if

any observed patient characteristic drives both patient requests and physician prescriptions,

its effect will be controlled while we disentangle the impact of requests on physicians’ deci-

sions. Second, we propose a joint modeling framework allowing for potential interdependence

between patients’ request behaviors and physician prescription decisions because of unob-

served patient or physician characteristics. Specifically, in both the patient request models

and the physician prescription decision model, unobserved patient and physician character-

istics that drive requests or prescriptions are modeled as random effects of propensity for a

drug at physician level. To control for the correlation between the request models and the

prescription model, we specify a flexible joint multivariate semi-parametric distribution on

the aforementioned random effects from the patient request models and the physician pre-

scription model. With correlated random effects, the proposed approach allows for potential

interdependence between behaviors of patient’s requests and decisions of physicians at the

disaggregate level.

The third challenge is about the interpretation of interaction coefficients in our nonlinear

modeling framework. To investigate the role of patient characteristics in the triggering of

drug requests and the physician’s willingness to accommodate patient drug requests, we

interact patient characteristics with DTCA in the patient drug request model and patient

characteristics with patient requests in the physician prescription model. In a nonlinear
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model, however, the interpretation of interaction coefficient is not as straightforward as in a

linear model. Neither can the significance of interaction effects be obtained by testing the

significance of interaction coefficients in a nonlinear model (Ai & Norton 2003, Norton et al.

2004). The clarification of this distinction has important implications in applied statistics,

given the wide use of nonlinear models (e.g., the logit model and Poisson model). To deal

with this challenge, we adopt an analytically consistent expression for the interaction effect

between patient characteristics and DTCA on patient drug request probabilities and the

interaction effect between patient characteristics and requests on physicians’ prescription

probability. In our application, we further demonstrate that the estimation of interactive

effects is straightforward in a Bayesian Markov chain Monte Carlo (MCMC) framework.

The conventional approach suggested by Ai & Norton (2003) involves a more complicated

derivation of asymptotic variance for the interactive effects.

It should also be noted that not only from the modeling aspect, dealing with the afore-

mentioned analytical challenges has important managerial and public policy implications be-

cause it provides a better understanding of the role of DTCA in generating patient requests

for the advertised drug and the role of drug requests in motivating physician prescriptions.

First of all, pharmaceutical firms can optimize their DTCA spending levels with a better

understanding of the effectiveness of DTCA and patient drug requests. Without accounting

for zero-inflation within and across physicians appropriately, a request model will result in a

biased estimate of the effectiveness of DTCA in generating patient requests and mislead phar-

maceutical firms to either overspend or underspend on DTCA. Similarly, without controlling

for interdependence between patient request decisions and physician prescription decisions,

a prescription model will result in a bias estimate of the impact of drug requests on physician

prescriptions and mislead firms to either overspend or underspend their DTCA to generate

drug requests. Second, an accurate understanding of the role of patient characteristics in the

trigger of drug requests or physician accommodations to drug requests cannot be reached

without the aforementioned challenges being handled, in particular, without an appropriate
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interpretation of interaction coefficients in our nonlinear framework. A misunderstanding of

these interactive effects will result in inappropriate allocations of DTCA resources to target

specific segments of patients. For example, an overestimate of a minority’s responsiveness to

DTCA in generating drug requests will result in excessive DTCA being allocated to target

minority patients. Similarly, an underestimate of physician accommodations to minority

patient drug requests relative to nonminority patients may mistakenly make inference that

minority patients are being discriminated against as they participate in medical decisions.

The remainder of this article is organized as follows. Section 2 describes a motivating

example from an erectile dysfunction drug. Section 3 describes our proposed Bayesian joint

modeling framework for patient requests and physician prescriptions. Section 4 discusses

Bayesian inference for the proposed model framework and develops the idea of interaction

effect in a nonlinear model. Section 5 discusses model selection criteria and presents empirical

results, followed by a conclusion in Section 6.

2 Motivating Data

We focus on a unique physician panel data set from the Erectile Dysfunction category, com-

bining advertising expenditure data. Because this is one of the categories with a significant

amount of patient involvement, it provides an appropriate context for the study of patient

drug request behaviors and physician prescription decisions jointly.

2.1 Erectile Dysfunction (ED) Category

Erectile dysfunction is a condition that affects 15 to 30 million men in the United States

(NIH Consensus Conference 1993). Only three oral drugs, of one category called PDE5

inhibitor, have been approved by the U.S. Food and Drug Administration to manage this

disease condition. These drugs are Viagra (by Pfizer), Levitra (by GSK Pharmaceuticals and

Bayer), and Cialis (by Eli Lilly). The patent for Viagra received approval in 1998, whereas
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the other competitors got approval in 2003. The annual sales of Viagra reached $1.1 billion

in 2012 and was the 53rd best selling drug among drugs for cancer, HIV, cholesterol, asthma,

and anxiety disorder. Even after being launched in 2003, Cialis reached $0.9 billion sales

in 2012. The ED market has become competitive over the years. Advertising for ED drugs

grew to $337 million in 2009 from $200 million in 2006.3

2.1.1 Physician-Reported Patient Visits Data

Our first dataset comes from a physician panel managed by a marketing research firm, Im-

pactRx Inc. The panel consists of a representative sample of the universe of physicians in

the United States. Each sampled physician reports prescriptions written for each of his/her

patients, any drug requests made by the patient, detailing visits, and each patient’s charac-

teristics, including insurance status, diagnosed level of severity, ethnicity/race backgrounds,

and age. We observed the data for 44 months from May 2002 to December 2005. Since Cialis

and Viagra were launched in 2003, to avoid the complication from the new drug launch and to

solve the initial condition for advertising carry-over effects, we are modeling the prescription

and request data from January 2004 to December 2005 and use the beginning 20 months to

calculate initial stock for DTCA. Because pharmaceutical firms normally focus on acquiring

new customers in their marketing competition, we therefore, focus on new patient visits.

The result leaves us with 8,053 patient prescriptions from 567 physicians over a 24-month

(month 21 - month 44) period.

The variable Minority captures a patient’s race/ethnicity, with 1 indicating the patient

is African-American or Hispanic and 0 indicating non-minority. Mild captures a physician’s

diagnosis of a patient’s condition, with 1 indicating mild and 0 indicating a severe condition.

The third variable, U/M, captures the insurance status of a patient, with 1 being uninsured

or Medicaid-insured and 0 being others. The fourth variable, Age, represents a patient’s

age. In the study sample, 22.3% are minority patients; 30% patients have mild disease

3Source: TNS/Kantar Media Intelligence Ad$pender.
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Figure 1: Physicians Reported Patient Request

condition, and 17% are either uninsured or insured by Medicaid. The insurance variable

here approximates the socio-economic status of patients because persons with low incomes

are more likely to be Medicaid recipients or uninsured (Becker & Newsom 2003). The average

age of patients in our sample is 54.

In Figure 1, we show the distribution of patient drug requests. Among 8053 patient visits,

the majority (6692) requested no drugs, 651 requested Viagra, 183 requested Levitra, and

523 requested Cialis. Among 567 physicians in our sample, 306 never reported drug requests

from their patients, and 261 physicians reported drug requests for at least one of these three

drugs. Therefore, a large number of no requests occur within and across physicians, which

complicates the modeling.

In Figure 2, we plotted the number of detailing visits aggregated across physicians by

brand over time. It is evident that the two relative new drugs delivered more detailing visits

than Viagra, the oldest drug. This pattern is especially pronounced for the months after

entry of the two new drugs. The figure also shows that all three brands are reducing their

detailing levels along with each other overtime, which suggests that the firms in this category

compete head-to-head in detailing.
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Figure 2: Total Number of Detailing Visits by Brand Name

2.1.2 Advertisement Expenditure Data

Our second dataset contains monthly DTCA expenditures for each brand in the category at

the Designated Media Area (DMA) level. DMAs are large, and each one contains more than

200 zip codes on average. We map the DTCA expenditure, using DMA to zip mapping,

to each physician’s practice location. One would expect that pharmaceutical firms spent

more on DTCA in more populous DMAs. To control for this difference because of DMA

population size, we used DTCA per capita in this study. In Figure 3, we plotted the DTCA

per capita expenditure averaged over DMAs for all three brands. Similar to the detailing

visits, the two new drugs spent heavily on DTCA during the months after their entries into

the market.
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Figure 3: Average DTCA per capita by Brand Name

3 Zero-inflated Multinomial Joint Model

In this section, we present our modeling framework which consists of two models estimated

jointly. First, we propose a zero-inflated mutlinomial model for the drug requests by patients,

after which we present a model for physicians’ prescriptions decisions under the influence

of drug requests and detailing. We finally joined the two models with flexibly correlated

random effects at physician level.

3.1 Modeling Patient Requests: A Zero-inflated Multinomial Model

Let yij denote the drug request behavior of the jth patient as reported by ith physician during

the patient’s visit to the physician, j = 1, 2, · · · , ni; i = 1, 2, · · · ,m; where m represents the

number of physicians in the study, and ni is the number of patients visited the ith physician.

yij = k indicates that the patient requests for drug k (k = 1, 2, · · · , K) and yij = 0 indicates

that the patient does not make any drug request according to the physician’s record. Since

a large number of zero drug requests observed in yij, our model needs to account for extra
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zeros to avoid biased estimates. However, the occurrence of zero requests might be because

of two different incidents: zero request because of physicians not reporting and zero request

because of patients making no requests. A great many physicians (≈ 53%) reporting no drug

requests in our sample suggests that the former incidents are not negligible. Ideally, while

modeling patients drug requests, one should distinguish the occurrence of zeros resulting

from the two different incidents. However, as there are no covariates to distinguish the two

kinds of zeros, we use a binary logit with physician-level random intercepts to model all the

occurrences of zero requests and account for the different kinds of zeros in the distribution

of physician heterogeneity.

For each observed response, yij, we define:

yij


= 0, with probability (1− qij), accounting for the zero observations

6= 0, with probability qij,

(1)

where qij is the probability of making a request for any drugs by patient j in her/his visit

to physician i.

When a patient makes a drug request, yij can take any of the values among k =

1, 2, · · · , K, where K is the number of available drugs for the disease. Thus, we have:

yij = k|yij 6= 0 ∼ multinomial (1;πij1, πij2, · · · , πijK) (2)

It follows that

P (yij = 0) = (1− qij) (3)

P (yij = k) = qijπijk k = 1, 2, · · · , K. (4)

where πijk denotes the probability that the jth patient making request for the kth drug

to the ith physician given that she/he makes a drug request. To model the probability of
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observing a request, we use a binary logit model. To model the probability of observing a

request for a particular drug given that the patient made a request, we use a multinomial

logit model.

Thus, the zero-inflated multinomial (ZiMNL) choice model cane be written as :

P (yij = k) = (1− qij)I{yij=0} + (qijπijk)
I{yij 6=0} k = 0, 1, 2, · · · , K (5)

and

logit(qij) = βq0 + ω1t(j) +XT
ijβ

q + δq0TAdSit(j) + (XT
ij × TAdSit(j))δq + bqi (6)

πijk =
exp(ηijk)∑
k exp(ηijk)

(7)

ηijk = βπk,0 + ω2kt(j) +XT
ijβ

π
k + δπ0AdSikt(j) + (XT

ij × AdSikt(j))δπ + bπik (8)

where βq0 is the intercept for the binary logit model and βπk,0 is a drug-specific intercept for the

multinomial logit (MNL) model; t(j) represents the month in which patient j visits physician

i ; ω captures a linear time effect on drug requests;4 Xij = {Minorityij,Mildij, (U/M)ij, Ageij}

denotes jth patient’s (of ith physician) race/ethnicity, diagnosis level, insurance status, and

age, respectively. Because patient characteristics are common to all drugs, we specify alter-

native specific coefficients to capture their impacts on patients decisions about which drug to

request; to capture the unobserved heterogeneity of drug requests across physicians, we in-

troduce the physician-level random effects, (bqi , b
π
i1, · · · , bπiK), into the models. Because we do

not differentiate two kinds of zero request observations in our model, bqi captures two types of

physician-level unobserved effects: (1) unobserved characteristics of patient base that drive

4We also tried alternative time effects, such as quadratic time effects. Our main results remain robust to
alternative time effect set ups.
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patients to make drug requests or not; (2) some physicians are reporting active while others

are not. As a consequence, one may expect the multimodality and skewness in the latent

distribution characterizing the physician-level heterogeneity in Equation (6). To address

this problem, we introduce a flexible nonparametric distribution for random intercepts in

our model, which we will discuss in detail in Section 3.3.

AdSikt is the accumulated and depreciated DTCA stock for drug k in month t in the

DMA where physician i practices. The impact of direct-to-consumer advertising (DTCA) by

pharmaceutical companies is expected to carry from one period to the next with deteriorating

effectiveness. To capture this long-term dynamic effect, we follow the exponential decaying

process advertising model of Nerlove & Arrow (1962) and formulate AdSikt as follows:

AdSikt = DTCAikt + λaAdSik,t−1; 0 < λa < 1, t = 1, · · · , 44 (9)

=
t∑

τ=0

λ(t−τ)a DTCAikτ (10)

where, DTCAikt is the dollar-per-capita expenditure of drug k’s DTCA in month t in the

DMA where physician i practices; and λa is a carryover parameter that captures the DTCA

stock carried over from the previous period. TAdSit(j) =
∑K

k=1AdSikt(j) representing cat-

egory level accumulated and depreciated DTCA. With this category level DTCA, we can

understand whether DTCA expands the whole ED market via patient drug requests or not.

Previous studies of consumer purchases and no purchase decisions have used a same or

similar approach in modified brand choice multinomial logit model (Ching et al. 2009, Liu

et al. 2015). In models (6) and (8), we also include interaction terms between patient char-

acteristics and DTCA stock, which help us to answer some interesting questions from our

data.

It is worth to note that DTCA can suffer from possible endogeniety if pharmaceutical

companies decide their DTCA expenditures based on market factors not included in our

model. Therefore we might end up with a biased estimate of the effect of DTCA on pa-
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tient requests because of the endogeniety problem. For linear models, in general two-step

approach is utilized, in which instrument variables are used to regress endogenous variable

and its predicated values are used to get the unbiased estimator. In our case we utilize

a control function approach (Wooldridge 2015, Petrin & Train 2010), which is also a two

stage regression with instrument variables. However the residuals instead of the predicted

values from the first stage regression are used at the second stage regression to get unbiased

estimators.

For TAdSit we use the total DTCA stock by ED firms on drugs other than ED in the

DMA where physician i practices in month t as the instrument variable. The first stage

regression is specified as the following:

TAdSit = αI1 + βI1 × TODTCASit + rIit (11)

where ODTCASikt are accumulated and depreciated DTCA expenditure by ED firms on

all drugs other than ED and formulated the same way as TAdSikt. To calculate the stock

variables for the control functions, we fix carry-over parameters at 0.85 based on previous

studies (Berndt et al. 1995).5

For AdSikt we use DTCA stock on drugs other than ED drugs from the pharmaceutical

firm k in the DMA where physician i practices in month t as the instrument variable. So

the first stage regression is given as:

AdSikt = αI2 + γIk + βI2 ×ODTCASikt + βI31(k = 1) + βI41(k = 2) + sIikt (12)

where ODTCASikt are formulated the same way as AdSikt, β
I
3 and βI4 captures drug specific

fixed effects. Again, the carry-over parameter is fixed at 0.85.

We use the residuals r̂Iit and ŝIikt obtained from the first set of regressions in Equation 6

5We also tried carry-over values between 0.8 and 0.9 for robustness check. Our results remain qualitatively
the same for these alternative values.
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and 8 as independent variables. We can then rewrite the equations as follows:

logit(qij) = βq0 + ω1t(j) +XT
ijβ

q + δq0TAdSit(j) + (XT
ij × TAdSit(j))δq + bqi + ϑ1 × r̂Iit (13)

ηijk = βπk,0 + ω2kt(j) +XT
ijβ

π
k + δπ0AdSikt(j) + (XT

ij × AdSikt(j))δπ + bπik + ϑ2 × ŝIikt(14)

Our regressions of total ED DTCA stock and brand specific ED DTCA stock on the

instrumental variables yield positive coefficients. This suggests that ED DTCA expenditures

are correlated with instrumental DTCA expenditures over time. We believe that the positive

correlations are driven by common underlying factors such as media costs. The strength of

the instruments are demonstrated by an F-statistic of 7328 for Equation (11) and 758 for

Equation (11) against the restricted models that the instruments are irrelevant in the first-

stage regressions. A common rule of thumb is that this F-statistic should be larger than 10

(Staiger & Stock 1997). Therefore, the residuals we include in Equations (11) and (12) help

us control for the possible endogeneity.

3.2 Modeling Physician Prescriptions: A Multinomial Model

Let Rij denote the prescription made by the ith physician for the jth patient and ρijk be

the probability of prescribing drug k. We use a multinomial discrete choice model to study

physicians’ prescription decisions under the influence of patient drug requests, physician pre-

scription habits, patient characteristics, detailing, and the word-of-mouth among physicians.

Thus a model is given as the following:

Rij ∼ Multinomial (1; ρij1, ρij2, · · · , ρijK) (15)

ρijk =
exp(Uijk)∑K
l=1 exp(Uijl)

(16)
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where

Uijk = βρk,0 +XT
ijβ

ρ
k + δρ1Hij + δρ2DetSit(j)k + κρ0I(yij=k) + (XT

ij × I(yij=k))κρ + bρik (17)

where, βρk,0 is a drug-specific intercept for the multinomial logit model; Xij includes patient

characteristics, the same as described above for drug request models; Hij is the prescription

decision for a visit proceeding patient j’s visit capturing physician i’s prescription habits;

I(yij=k) is an indicator variable that assumes a value of 1 if drug k is requested by the patient,

otherwise zero; (bρi1, · · · , b
ρ
iK) are drug-specific physician-level random effects that captures

the unobserved physician preferences for different drugs, including the preferences resulting

from physicians’ unobserved patient base characteristics. To capture the interactive effects

of drug requests and patient characteristics, we include corresponding interaction terms in

the model.

DetSikt is the cumulative and depreciated measurement of detailing visits to physician i at

time t from drug k. Previous studies have shown that the detailing visits by pharmaceutical

sales representatives influence physician prescription decisions in both current and future

periods (Ching & Ishihara 2010, 2012, Liu et al. 2015, 2016). Similar to DTCA, we assume

an exponential decay process to the detailing-stock (DetSikt) as follows:

DetSikt = Detikt + λeDetSik,t−1; 0 < λe < 1, t = 1, · · · , 44 (18)

=
t∑

τ=0

λ(t−τ)e Detikτ (19)

where, Detikt is the number of detailing visits to physician i at time t from drug k. Our end

variable DetSikt is obtained by summing Detikt over months, i.e., DetSikt =
∑t

τ=0 λ
(t−τ)
e Detikτ .
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3.3 Correlation Structure and Heterogeneity: Centered Dirichlet

Process

As we discussed in the introduction, the models of drug requests and the model of physician

prescription decisions might not be independent of each other because certain unobservable

factors can potentially drive both patient request and physician prescription decisions. To

account for this dependence, we must combine these effects by correlating the multiple

outcomes. However, since these outcomes are measured on a variety of different scales (viz.,

multinomial, ZI), it is not possible to directly model the joint predictor effects because of the

lack of any natural multivariate distribution for characterizing such a dependency. A flexible

solution is to model the association between different responses (patient drug requests and

physician prescriptions) by correlating the random heterogeneous effects from each response.

In our joint modeling approach, random effects are assumed for each response process and

the different processes are associated by imposing a joint multivariate distribution on the

random effects. Such a model not only gives us a covariance structure to assess the strength

of association between the responses, but it also borrows information across the outcomes

and offers an intuitive way of describing the dependency between the responses.

Let bi = (bqi , b
π
i1, · · · , bπiK , b

ρ
i1, · · · , b

ρ
iK)T be the vector representing the random effects

associated with the ith physician. Usually, a parametric normal distribution is considered

for bi, though the choice of the normality is often a result of computational tractability,

an assumption that may not always hold in reality. It also provided limited flexibility be-

cause a normal distribution is limited to a symmetrical and unimodal distribution. In many

problems, particularly in our setting, this may result in misleading inferences about the

magnitude of effects and nature of heterogeneity. In our setting, we anticipate the random

effects to have at least a bimodal shape because of the presence of two kinds of zero requests,

viz., zero requests resulting from physicians not reporting, and zero requests resulting from

patients making no requests. One common way would be to use a finite mixture of normal

distributions as an alternative choice. However, rather than handling the very large number
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of parameters resulting from the finite mixture models, it may be easier to work with an

infinite dimensional specification by assuming a random mixing distribution which is not

restricted to a specific parametric family (Li & Ansari 2014, Voleti et al. 2015, Braun &

Bonfrer 2011). We use the richer nonparametric model by assuming a Dirichlet process prior

for the bi (Ferguson 1973, 1974). Thus, in the context of our proposed models, we assume

an unknown distribution G for the random effects which in turn is assumed to be random

and a Dirichlet process (DP) is placed on the distribution of G. The model for bi then can

be written as

bi ∼ G, G ∼ DP (αG0) (20)

where α is a positive scalar precision parameter and G0 is a parametric baseline distribution.

We assume a multivariate normal distribution for G0, i.e., G0 ∼ N(0,Σ). Realizations

from the DP are discrete with probability one, implying that the estimated bi that will be

drawn from G will be grouped into cluster, thus allowing for possible multimodality in the

distribution of bi. The discrete nature of the DP can be seen to be obvious from the popular

stick-breaking formulation pioneered by Sethuraman (1994). The stick-breaking formulation

implies that G ∼ DP (αG0) is equivalent to

G =
∞∑
h=1

πDh δbh
, bh ∼ G0, and

∞∑
h=1

πDh = 1 (21)

where G is a mixture of countably but infinite atoms, and these atoms are drawn inde-

pendently from the base distributions G0, and δb is a point mass at b. An atom is like

a cluster (i.e., a subgroup of random effects), πDh is the probability assigned to the hth

cluster, bh is the value of that cluster and all random effects in a cluster share the same

bh. In (21) πDh = Vh
∏

l<h(1 − Vl), which is formulated from a stick-breaking process, with

Vh ∼ Beta(1, α). For small values of α, Vh → 1 and thus πDh → 1 assigning all probability

weight to few clusters and thus the G is far off from G0. On the contrary for large value of
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α, number of cluster can be as many as the number of random effects implying the sampled

distribution of G is close to the base distribution G0. For practicality, researcher use a finite

truncation to approximate the G, i.e,, G ∼
∑H

h=1 π
D
h δbh

.

While the above formulation looks good, there is an issue of identifiability in it in the

sense although the prior expectation of the mean of G is 0, the posterior expectation can very

well be nonzero an thus can bias inference (Yang 2010, Li & Ansari 2014). In parametric

hierarchical models, it is a standard practice to place a mean constraint on the latent variable

distribution for the sake of identifiability and interpretability. In nonparametric DP, Yang

(2010) proposed to use a entered DP to tackle the identifiability. Li & Ansari (2014) has

shown the utility of entered DP in modelling heterogeneity in choice models. Following Yang

(2010) and Li & Ansari (2014), we centre the DP to have zero mean. We estimate the mean

and variance of the process, i.e., µmG and Σm
G at the mth MCMC iteration as

µmG =
H∑
h=1

V m
h

∏
l<h

(1− V m
l )bmh (22)

Σm
G =

H∑
h=1

V m
h

∏
l<h

(1− V m
l )(bmh − µmG )(bmh − µmG )

′
(23)

where V m
h and bmh are the posterior samples from the uncentered process defined in (21)

and (bmh − µmG ) is the centered estimate for random effects at the mth iteration. The above

entered DP implies that E(bi|G) = 0 and Var(bi|G) = ΣG.

4 Bayesian Inference

4.1 Likelihood

Let yi = (yi1, yi2, · · · , yini
)T , and Ri = (Ri1, Ri2, · · · , Rini

)T be the response vectors. Further,

we define βπ = (βπ1 , · · · , βπK)T , βπ0 = (βπ10, · · · , βπK0)
T , βρ0 = (βρ10, · · · , β

ρ
K0)

T , and βρ =

(βρ1 , · · · , β
ρ
K)T , ω2 = (ω21, · · ·ω2K). Let Ω = (Ω1,Ω2,Ω3) be the parameter space. Here,
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Ω1 = (βq0 , β
q, δq0, δ

q, βπ0 , β
π, δπ0 , δ

π, λa, ω1, ω2) is the parameter vector for the patient request

model, Ω2 = (βρ0 , β
ρ, δρ1 , δ

ρ
2 , κ

ρ
0, κ

ρ, λe) is the parameter vector from the physician prescription

model, and Ω3 = (α,Σ) is the parameter from DP prior for the random physician effects

bi. Then under the assumption that conditional on the correlated random effects, bi, the

models are independent, the joint likelihood can be written as

L(yi,Ri,bi|Ω) ∝ L(yi|Ω1,bi)× L(Ri|Ω2,bi)× L(bi|Ω3) (24)

where,

L(yi|Ω1,bi) ∝
ni∏
j

[1− qij]I{yij=0} ×
[
(qij)π

I{yij=1}

ij1 π
I{yij=2}

ij2 · · · π
I{yij=K}

ijK

](1−I{yij=0}

)
(25)

with qij and πijk given in Equations (13) and (14), and

L(Ri|Ω2,bi) ∝
ni∏
j

ρ
I{Rij=1}

ij1 ρ
I{Rij=2}

ij2 · · · ρ
I{Rij=K}

ijK (26)

with ρijk given in Equation (16), and L(bi|Ω3) is the likelihood corresponding to the DP

prior assumed to characterise the physician-level random effects.

4.2 Prior Specification and Posterior Inference

It is worthwhile to note that Ω1 contains 30 parameters and Ω2 contains 17 parameters. Since

the number of parameters is relatively high, we use shrinkage prior. As discussed in Belloni

et al. (2012), this could lead to nonreliable estimates because of the high-dimensionality of

the parameter space. In recent times, researchers have being relying on shrinkage methods.

Let us assume that θ = {θj; j = 1, 2, · · · , 47} is the set of high-dimensional covariates. A

general hierarchical formulation of shrinkage prior would then look like
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θj|τ 2j ∼ N(0, τ 2j ); τ 2j ∼ F

People make different choices of F and thus results in different families of shrinkage

prior. Belloni et al. (2012) use F ∼ exp(λ2/2) resulting in the famous Lasso prior. Here

λ is the shrinkage parameter. Lasso is a common and popular shrinkage prior that gives

high probability for an estimated parameter to be near zero and in the meantime gives

each coefficient a chance to take a large effect. However, a major disadvantage of the Lasso

shrinkage method is that it fails to account for the possible multicollinearity between the

covariates. This is a serious drawback of Lasso methods because (a) it is hard to check

for multicollinearity using variance inflation factor for all possible pairwise covariates; (b)

another issue of high-dimensional covariates is spurious correlation that can impose a sample

multicollinearity even if there is no theoretical basis for the presence of correlation. Thus

we need a prior that not only does the shrinkage as Lasso, but is also robust in the presence

of multi-collinearity. The Bayesian elastic net as proposed by Zou & Hastie (2005) does

shrinkage even when there are unknown groups of multicollinear predictors.

Thus, we use a Bayesian elastic net prior as follows:

θj|τ 2j ∼ N(0, τ 2j ); τ 2j ∼ F (27)

F = (w−2j + λ2)
−1; w2

j ∼ exp(λ21/2) (28)

λ21 ∼ Gamma(a, b); λ22 ∼ Gamma(c, d) (29)

For each component of Ω1 and Ω2, we specify a Bayesian elastic net prior as mentioned

above. The full Bayesian model in the present context is completed by prior assumptions on

α and G0.
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α ∼ Gamma(ν1, ν2), G0 ∼ N(0,Σ), and Σ−1 ∼W(e, (eE)−1)

where W stands for an Wishrat distribution. the hyper parameters a, b, c, d, ν1, ν2, e, E

are assumed to be known.

The joint posterior distribution of the parameters of the models conditional on the data

are obtained by combining the likelihood in (24) and the prior densities using Baye’s theorem:

f(Ω,b|y,R) ∝
m∏
i=1

{L(yi,Ri,bi|Ω)} × π(α)× π(Σ)×
47∏
l=1

π(θl) (30)

The posterior distributions are analytically intractable. However, the model can be

fitted by using Markov chain Monte Carlo (MCMC) methods, such as the Gibbs sampler,

which allows us to generate a sequence of draws from the full-conditional distributions for

each parameter conditional on all other parameters. We implemented the model estimation

in the WinBUGS, a free available software at www.mrc-bsu.cam.ac.uk/bugs. Convergence

was monitored via MCMC chain histories, autocorrelation and cross correlation, density

plots, and Brooks–Gelman–Rubin statistics (Brooks & Gelman 1997). We ran two chains

of the Gibbs sampler with widely dispersed initial values. The initial values for the fixed

parameters were selected by starting with prior mean and covering ±3 standard deviations.

For the ZiMNL, we used the “ones trick” (Spiegelhalter et al. 2004). However, it led to very

long computational times; thus we used the WinBUGS Development Interface (WBDev;

Lunn (2003)) to compile functions and distributions in component Pascal. This is efficiently

implemented via the R2WinBUGS (Sturtz et al. 2005) package for R.
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4.3 Interaction Effects

One of our objectives in this paper is to investigate the interaction effects between patient

characteristics and DTCA on patient drug request behaviors and the interaction effects be-

tween patient characteristics and patient drug requests on physician prescription decisions.

Since we have a nonlinear modeling setups for both patients’ drug request behaviors and

physicians’ prescription decisions, the regression coefficients of interaction terms in our mod-

els are not the same as the interaction effects.

To accurately interpret the estimated interaction term coefficients in Equations (14) and

(17), we extended the logistic formulation of Norton et al. (2004) to a Multinomial logit

model. Let’s assume that a dependent variable y can take k values C0, C1 . . . , Ck−1 (no

natural ordering of choices), and F i is the probability that y = Ci (taking C0 as the base

case). Thus F i has a multinomial choice. In a simplified set-up with x1 and x2 interacted,

we have

F i(u) = F i(u0, u1, . . . , uk−1) =
exp(ui)

1 +
∑k−1

j=1 exp(uj)

For simplicity, we write the alternative specific latent utility in a general form as ui =

β1x1+β2x2+β12x1x2+Xβ where a coefficient is alternative specific (e.g., βi1) if the covariate is

common to all alternatives (e.g., x1), and the coefficient is common to all alternatives (e.g.,

β1) if the covariate is alternative specific (e.g., xi1). The formulation of interaction effect

between x1 and x2 will change based on the nature of the covariates of x1 and x2.

In the first scenario, both x1 and x2 are binary variables (e.g., patient request and patient

characteristics). Thus the interaction effect can be written as a discrete double difference:
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∆2F i(u)

∆x1∆x2
= F i(u|x1=1,x2=1)− F i(u|x1=1,x2=0)

−F i(u|x1=0,x2=1) + F i(u|x1=0,x2=0)

In the second scenario, xi1 is an alternative specific continuous covariate (e.g., drug spe-

cific DTCA) and x2 is a binary covariate that is common to all alternatives (e.g., patient

Minority). Thus the interaction effect can be calculated by first taking partial derivative

with respect to the continuous variable and then taking a discrete difference for the binary

variable.

∆

∆x2

∂F i(u)

∂xi1
=

∆

∆x2

{
∂ui
∂xi1
· ∂F

i(u)

∂ui
+
∑
l 6=i

∂ul
∂xi1
· ∂F

i(u)

∂ul

}

=
∆

∆x2

{
∂ui
∂xi1
· ∂F

i(u)

∂ui

}
=

∆

∆x2

{
(βi1 + βi12x2)f

i
i (u)

}
= (βi1 + βi12)f

i
i (u|x2=1)− βi1f ii (u|x2=0)

where f ii (u) = ∂F i(u)
∂ui

.

In the third scenario, xi1 is an alternative-specific continuous covariate (e.g., drug-specific

DTCA) and x2 is a continuous covariate that is common to all alternatives (e.g., patient

age). Thus the interaction effect can be calculated by first taking partial derivative with

respect to xi1 and then taking partial derivative with respect to x2.

∂2F i(u)

∂x2∂xi1
=

∂

∂x2

{
(βi1 + βi12x2)f

i
i (u)

}
= βi12f

i
i (u) +

k−1∑
m=0

(βi1 + βi12x2)(β
m
2 + β12x

m
1 )f̃ iim(u)
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where f ii (u) = ∂F i(u)
∂ui

and f̃ iim(u) = ∂2F i(u)
∂ui∂um

.

In the last scenario, xi1 is an alternative specific binary covariate (e.g., drug specific

request) and x2 is a continuous covariate that is common to all alternatives (e.g., patient

Age). Thus the interaction effect can be calculated by first taking partial derivative with

respect to the continuous variable, x2 and then hen taking a discrete difference for the binary

variable, xi1.

∆

∆xi1

∂F i(u)

∂x2
=

∆

∆xi1

{
k−1∑
l=0

(βl2 + β12x
l
1)f

i
l (u)

}
= (βl2 + β12)f

i
l (u|xi1=1)− (βl2)f

i
l (u|xi1=0)

+
∑
l 6=i

(βl2 + β12x
l
i){f il (u|xi1=1)− f il (u|xi1=0)}

where f il (u) = ∂F i(u)
∂ul

.

5 Results

We apply the proposed joint modeling framework to the data described in Section 2. In this

section, we first compare our models with a couple of competing models, and we then discuss

estimation results for each component of our joint modeling framework.

5.1 Bayesian Model Selection

In addition to the proposed model (Model-1), we also consider the following two alternative

models in terms of model fit:

• Model-2: A joint modeling framework includes a zero-inflated MNL model for patient

drug requests and an MNL model for physician decisions, such as those in Model-1,

but the models are joined with a parametric normal distribution on random effects, bi.
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• Model-3: A joint modeling framework includes an MNL model for patient drug requests

where zero drug request is not modeled, and an MNL model for physician prescription

decisions as that in Model-1. The two MNL models are then joined as in Model-1 by

a nonparametric multivariate distribution for bi.

The selection of a model with the best fit is a challenging task in our case because the

possible models are non-nested and have different structures and difficulty in integrating out

the latent random effects to achieve the marginal model selection criteria. To tackle the

above-mentioned problems, we adopt a DIC based on the observed likelihood. The DIC as

a model selection approach has been used in several previous studies involving zero-inflated

data (Neelon et al. 2013, Montagna et al. 2012). The DIC is a natural generalization of the

Akaike Information Criterion (AIC) (Akaike 1973) and interpreted as a Bayesian measure of

fit penalized for increased model complexity. Let D = (y,R) be the observed data, θ be the

set of parameters and b is the set of latent random effects variable.

DIC in its basic form is defined by ((Spiegelhalter et al. 2002))

DIC(D) = D(θ) + pD = −4Eθ[log p(D|θ)|D] + 2 log p(D|Eθ(θ|D).

Although AIC and BIC are well suited for fixed effects models (since the number of

parameters are easily determined), DIC is better suited for the hierarchical random effects

model because the dimension of the parameter space in a hierarchical random effects model

is less clear and depends on the degree of heterogeneity between subjects. However, the

above definition of DIC tends to be unreliable and can produce negative pD for random-

effects/mixture models (Celeux et al. 2006). We have a similar issue. Also in our setting,

with latent variable b, p(D|θ) is not in a closed form. Hence, we follow the approach in

Jiang et al. (2015), and Celeux et al. (2006), and calculate DIC4(D), by first considering

DIC measure with “complete data” with b and then integrating out the unobserved b.

DIC4(D,b) = −4Eθ[log p(D,b|θ)|D,b] + 2 log p(D,b|Eθ(θ|D,b).
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Integrating out b gives

DIC4(D) = −4Eb[{log p(D,b|θ)|D}+ 2 log{(D,b|Eθ(θ|D,b)}] (31)

= −4Eb,θ{log p(D,b|θ)|D}+ 2Eb[log{D,b|Eθ(θ|D,b)}|D]. (32)

where integration over b is obtained via numerical methods (Jiang et al. 2015).

In Table 1, we report the value of DIC4 for the three models. As shown in the table,

we can see that DIC4 value for the proposed model is the lowest. Thus among the models

considered, our proposed modeling framework is best in terms of the model selection criteria,

which enhances our confidence on the robustness of the results reported subsequently.

Table 1: DIC4 for Three Models

Model DIC4

Model-1 14190
Model-2 15392
Model-3 14882

5.2 Carryover Effects

We first present the estimates of carryover parameters from Equation (12, 13) and their 95%

Bayesian posterior intervals in Table 2. Hereafter in our tables, parameter estimates with *

are significant beyond 0.1 level and those with ** are significant beyond 0.05 level.

Table 2: Carryover Effects of DTCA and Detailing

Variable Parameter Mean 2.5% 97.5%

DTCA λa 0.886∗∗ 0.818 0.958
Detaling λe 0.754∗∗ 0.706 0.794

Our estimate of DTCA carryover effect (0.886) is close to the value (0.85) reported by

Berndt et al. (1995). The estimate suggests that it takes around 175 days for one dollar of

DTCA stock to depreciate to half of its value. The carryover effect of detailing is found to
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be 0.754, which is similar to the value estimated by Yi (2008), and suggests that it takes

around 75 days for one detailing visit to depreciate to half of its current value.

5.3 Patients’ Drug Request Model

We next report empirical results in our patient drug request model. In Table 3, we present es-

timates of the model of whether a patient makes a drug request or not. We find that patients

without insurance or with Medicaid insurance are more likely to request a drug, suggesting

those patients are more active in voicing their opinions in life-style drug treatments. On

the other hand, patients with milder condition are less likely to make a drug request. This

might be because more severe patients are more concerned and more knowledgeable about

the treatment. We also find that age is positively related to the likelihood of making a drug

request, though the effect is not significant. Elder patients might be more experienced and

more comfortable in making requests from physicians. Interestingly, we find that category

level advertising stock has a significant negative impact on a patient’s intention to request

a drug from the category. This might be a surprise for the pharmaceutical industry that

expects DTCA to generate more drug requests. However, on the other hand, it is intuitive.

With a bombardment of ED advertisements from all competing firms, patients might get

confused about which drug to request and become concerned about the side effects statement

from DTCA; therefore they are more likely to rely on physicians to make drug choices. In

September 2005, the American College Physician Chair said, “DTCA leaves patients con-

fused and misinformed ... ” (D. 2004). Even Hoek & Gendall (2003), in their study on New

Zealand participants, report one third of the sampled population became confused about

what medicine is right for them, and more than 60% got confused about risk/benefit infor-

mation. Also, excessive competition on DTCA may drive companies to focus on attacking

inferior characteristics of each other and drive away patients from requesting any ED drugs.

Similarly, Ansolabehere & Iyengar (1997) find that a large fraction of political advertising

campaign turns voters off and keeps people away from the polls, thus reducing overall turn
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outs and “shrinking the market.”.

For the interaction terms, we find a significant positive coefficient for TAdS × Mild, a

insignificant coefficient for TAdS × Age, TAdS × Minority, and TAdS × U/M. As discussed

in Section 5, the interaction coefficient cannot be interpreted as the interaction effect on

dependent variables in a nonlinear model; neither does its significance necessarily represent

the significance of the interaction effect. With the simulated MCMC draws for all parameters,

we are able to estimate these interaction effects and their credible intervals as shown in

Table 4. We find that patients with mild conditions are more likely to make a drug request

under the influence of category level DTCA than patients with nonmild conditions probably

because patients with milder conditions are less knowledgeable about the treatments in this

category initially and therefore the information delivered by DTCA has a higher marginal

effect for them than for those with more severe conditions. On the other hand, insurance

status, minority and age do not seem to influence category DTCA’s effect on drug requests.

Table 3: Patients’ Binary Drug Request Model (Eq. 9)

Variable Parameter Mean 2.50% 97.50%

Intercept βq0 2.439∗∗ 1.115 3.396
Age β1 0.375 -0.140 0.915
Mild β2 −0.992∗∗ -1.907 -0.013
Minority β3 0.152 -0.993 1.218
U/M β4 0.804∗∗ 0.093 1.578

TAdS δq0 −2.290∗∗ -3.500 -1.126
TAdS × Minority δq1 -0.102 -1.731 1.548
TAdS × Mild δq2 1.657∗∗ 0.087 3.286
TAdS × U/M δq3 -0.414 -1.756 0.659
TAdS × Age δq4 -0.153 -0.944 0.606

Linear Time Effect ω1 −0.209∗∗ -0.245 -0.163
Residual Term ϑ1 −3.122∗∗ -5.439 -0.547

Next, we present our estimates of patients’ MNL drug request model in Table 5. We find

that patients with mild conditions are more likely to request the oldest drug, Viagra, probably

because they feel Viagra is enough to solve their problems. Older patients, however, are more
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Table 4: Interaction Effect in the Patients’ Binary Drug Request Model

Variables Mean 2.50% 97.50%

TAdS × Minority -0.003 -0.078 0.042
TAdS × Mild 0.031∗∗ 0.001 0.159
TAdS × U/M -0.007 -0.060 0.028
TAdS × Age 0.001 -0.005 0.011

likely to request the newest drug, Cialis. Patients without insurance or Medicaid insurance

and minority patients are less likely to ask for Viagra relative to Cialis suggesting those

patients prefer more powerful drugs. Although the category-level DTCA stock negatively

impact patients’ probability of making a request for ED drugs, we find that drug specific

DTCA stock does have a significant positive impact on patient requests for the advertised

drug (1.875). This result suggests that DTCA is an important marketing instrument for

firms to gain a larger market share via patients’ request for the advertised drug.

As to the interaction effect, we find negative interaction effects between drug-specific

DTCA stock and patients’ minority status. This suggests that minority patients are less

likely to be influenced by drug-specific DTCA in requesting a specific drug than nonminority

patients are. It is worth noting that both Viagra and Levitra’s DTCA have significant

interactive effect with minority status in generating drug requests even if the coefficient of

AdS × Minority is insignificant. The discrepancy found in our empirical finding highlights

the importance of an appropriate interpretation/calculation of interaction effects and their

significance in a nonlinear model, as we have specified. Other patient characteristics including

U/M, Age, and Mild have positive but insignificant effects with drug-specific DTCA on

patient requests for a certain drug. We also visually display all interaction effects from the

MNL drug request model in the left panel of Figure 4.
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Table 5: Patients’ Multinomial Drug Request Model (Eq. 10)

Variable Parameter Mean 2.50% 97.50%

Viagra

Intercept βπ1,0 0.943∗∗ 0.087 1.69

Age βπ1,1 −0.162∗∗ -0.339 -0.004

Mild βπ1,2 0.698∗∗ 0.407 0.980

Minority βπ1,3 −0.346∗ -0.687 0.031

U/M βπ1,4 −0.451∗∗ -0.905 -0.063

Linear Time Effect ω21 −0.059∗ -0.089 0.007

Levitra

Intercept βπ2,0 3.082∗∗ 0.923 4.639

Age βπ2,1 −0.129∗∗ -0.363 -0.089

Mild βπ2,2 -0.053 -0.440 0.368

Minority βπ2,3 0.169 -0.249 0.553

U/M βπ2,4 -0.476 -1.048 0.161

Linear Time Effect ω22 −0.269∗∗ -0.342 -0.131

AdS δπ0 1.875∗∗ 0.147 4.498
AdS × Minority δπ1 -1.756 -4.199 0.626

AdS × Mild δπ2 0.414 -1.95 2.652
AdS × U/M δπ3 1.56 -1.065 4.449
AdS × Age δπ4 0.507 -0.875 1.784

Residual Term ϑ2 -0.270 -3.319 2.569

Table 6: Interaction Effects in Patients’ Multinomial Drug Request Model

Variables Drug Mean 2.50% 97.50%

AdS × Minority
Viagra −0.042∗∗ -0.412 -0.006
Levitra −0.054∗∗ -0.500 -0.006
Cialis -0.082 -0.599 0.029

AdS × Mild
Viagra 0.010 -0.101 0.185
Levitra 0.015 -0.122 0.287
Cialis 0.023 -0.161 0.344

AdS × U/M
Viagra 0.034 -0.058 0.349
Levitra 0.052 -0.041 0.562
Cialis 0.077 -0.076 0.598

AdS × Age
Viagra 0.037 -0.003 0.110
Levitra 0.0001 -0.032 0.033
Cialis 0.032 -0.060 0.102
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5.4 Physicians’ Prescription Choices

We now discuss the estimation results from the model of physician prescription decisions.

As shown in Table 7, physicians are more likely to give the older drug (Viagra) to patients

with milder conditions. This is consistent with what we find from the patient drug request

model where patients with milder conditions are more likely to ask for Viagra. We also

find that physicians are more likely to give older patients Levitra relative to Viagra and

Cialis. This finding is not a surprise considering that Levitra is more effective in diabetic

patients than other erectile dysfunction medicines, and type 2 diabetes risk increases with

age. It is worth noting such a prescription preference is different from patients’ preferences

for drug requests where older patients tend to favor Cialis versus Viagra and Levitra. This

empirical finding suggests that patients and physicians are consistent in choosing the drug

based on diagnosis diagnosis level but inconsistent in choosing the drug based on patient

age. Consistent with previous studies (Gönül et al. 2001, Dong et al. 2009, Liu et al. 2016),

we detect a significant and positive impact of detailing stock on physicians’ prescription

decisions (0.352). An estimate of the coefficient of prescription habit is significantly positive

(3.126) and indicates that physicians tend to have an inertia in their prescription behaviors.

The primary term of a patient drug request is significantly positive at the 95% level. We also

find significant positive estimates for the coefficients of (Request × Minority) and (Request

× Age).

We compute the interaction effects and their 95% Bayesian intervals in Table 8. For

all three drugs, we find positive and significant interaction effects between patient drug

requests and patients race/ethnicity. Our results suggest that physicians are more likely

to accommodate drug requests made by minority patients - notably African Americans and

Hispanics - than by nonminority patients. Despite improvements, racial and ethnic minorities

are prone to poorer quality health care than white Americans are, even factors such as

insurance status are controlled. Bias, stereotyping, and prejudice on the part of health-

care providers may contribute to racial and ethnic disparities in health care. Therefore the
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positive interaction effects may appear to be counterintuitive because a typical impression

is that bias and stereotyping in health care may drive physicians - mainly non-minority

themselves - to be more dominant and less likely to accommodate requests made by minority

patients than those by nonminority patients. However, physicians’ concerns for physician-

patient relationship might provide a reasonable explanation for our interesting findings.

Recent work shows that minority patients are commonly in ethnic-discordant relationships

with health professionals and rate the quality of interpersonal care by physicians in general

more negatively than white patients do (Blendon et al. 1995). Studies have also suggested

that accommodating patient drug requests helps physicians improve patients’ satisfaction

and reduces their defection (Bell et al. 1999, Stevenson et al. 2000). In particular, Lee &

Beqley (2011) found that African-American patients were significantly more likely to react

to a physician’s prescription drug refusal by switching physicians. Fearing that refusals may

damage the already shaky relationships with these patients, physicians might be less likely to

refuse requests by minority patients. Another important reason for the positive interaction

effects might be the change of physicians’ awareness of race/ethnicity discrimination. Over

the years, the long-held historical impression about race/ethnicity discrimination by whites

may have made physicians cautious of the race/ethnicity issue, causing them to dislike being

perceived as discriminatory. As a result, physicians are less likely to refuse requests made by

minority patients. This behavioral “counter-bias” might be rooted in physicians’ concerns

about the social and legal (also economic as we discussed above) consequences of refusing a

member of a historically oppressed racial or ethnic group. Such a behavioral “counter-bias”

has been documented in other fields, such as criminology. Through a high-fidelity laboratory

simulation, James & Vila (2014) find that participants show a behavioral bias in favor of

African-Americans by hesitating longer before deciding to shoot black suspects than white

suspects, although they subconsciously bias that African-Americans were more threatening.

As for patient age, we find that physicians are more likely to accommodate drug requests

made by older patients than those by younger ones. Our results are consistent with a previous
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finding that physicians are more likely to have patient-centered encounters with elderly

patients (Peck 2011). We also visually display all interaction effects from the prescription

model in the right panel of Figure 4.

Table 7: Physician Drug Prescription Model (Eq. 15)

Variable Parameter Mean 2.50% 97.50%

Viagra

Intercept βρ1,0 0.281 -0.109 0.616

Age βρ1,1 -0.014 -0.095 0.065

Mild βρ1,2 0.235∗∗ 0.098 0.384

Minority βρ1,3 0.016 -0.149 0.181

U/M βρ1,4 -0.138 -0.417 0.118

Levitra

Intercept βρ2,0 -0.222 -0.517 0.153

Age βρ2,1 0.088∗∗ 0.006 0.167

Mild βρ2,2 0.099 -0.053 0.248

Minority βρ2,3 -0.049 -0.226 0.125

U/M βρ2,4 0.146 -0.120 0.376

DetS δρ1 0.352∗∗ 0.301 0.406
Physician Habits δρ2 0.492∗∗ 0.410 0.577
Request κρ0 3.126∗∗ 2.369 3.806
Request × Minority κρ1 1.064∗∗ 0.525 1.623
Request × Mild κρ2 -0.280 -0.672 0.104
Request × U/M κρ3 -0.286 -1.01 0.504
Request × Age κρ4 0.479∗∗ 0.251 0.702

Table 8: Interaction Effects in Physician Drug Prescription Model

Variables Mean 2.50% 97.50%

Request × Minority
Viagra 0.007∗ -0.002 0.017
Levitra 0.007∗ -0.004 0.036
Cialis 0.009∗∗ 0.001 0.021

Request × Mild
Viagra -0.009 -0.048 0.002
Levitra -0.003 -0.019 0.003
Cialis -0.001 -0.007 0.007

Request × U/M
Viagra 0.007 -0.002 0.038
Levitra -0.004 -0.021 0.005
Cialis 0.004 -0.015 0.024

Request × Age
Viagra 0.070∗∗ 0.001 0.495
Levitra 0.155∗∗ 0.008 0.598
Cialis 0.100∗∗ 0.004 0.540
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Figure 4: Interaction Effect

5.5 Heterogeneity and Correlation Structure

The estimated value of α for Dirichlet process is 2.820 with a 95% Bayesian posterior in-

terval (1.033, 5.575). This indicates the presence of multimodality in the random effects

distribution. To visually show the distribution of heterogeneity bi, we plot the density of

each random effect in Figure 5.

As we can see from this figure, the estimated random effects pertaining to the binary

logit model of Equation (11) is indeed multimodal and asymmetric. This empirical outcome

verifies our assumption that there may be more than one kind of zero-generating process. The

estimated random effects pertaining to patient request for Levtira also show some multimodal

and asymmetric property that might be because Levitra is fit for ED patients with diabetic

condition but our model does not explicitly account for patient diabetic condition because

of the lack of such data. Other random effects tend to be more symmetric.

We finally discuss the joint multivariate distribution that links the patient drug request
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model and the physician prescription model. We estimate variance covariance structure be-

tween the random effects, using the MCMC samples. Our estimate of the variance-covariance

matrix for the multivariate distribution for bi is presented in Table 9.

Table 9: Empirical Variance-Covariance Matrix of Random Effects

bqi bπi1 bπi2 bρi1 bρi2

bqi 2.097∗∗ 0.054 0.210∗ −0.348∗∗ -0.037
bπi1 - 0.108∗∗ -0.007 0.153∗ -0.007
bπi2 - - 0.091∗∗ -0.004 0.054
bρi1 - - - 0.635∗∗ 0.202∗∗

bρi2 - - - - 0.272∗∗

The estimated variance covariance matrix indicates some significant correlations among

physician-level unobserved factors that drive patient drug requests and those that drive

physician prescriptions. This validates the necessity of a joint modeling approach. The

positive covariance between bqi and bπi2 suggests that a physician who tends to report more

patient requests for Levitra also tends to report more drug requests in total. We find that

the covariance between bqi and bρi1 is negative and significant, which suggests that physicians

who stick to the old drug (Viagra) are less likely to report patient drug requests in general.

This might be because those physicians are less open-minded and care less about inputs

from their patients; therefore, they either do not report their patient drug requests or do

not create a comfortable environment for their patients to make drug requests. It is worth

noting that the correlations of random effects from the brand-specific drug request model and

physician drug prescription model are positive for both drugs, 0.153 for Viagra (significant

at 90%) and 0.054 for Levitra. This means that there are some unobserved factors, e.g.,

certain disease condition, driving both the requests for Viagra and the prescriptions for

Viagra relative to Cialis. If this positive interdependence is not accounted for as we do, the

impact of drug requests on physician prescription decisions for Viagra may be overestimated.

The estimated positive interdependence suggests that patients are more likely to request

drugs that physicians are more likely to prescribe even after we control for some observable
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patient characteristics, such as age, diagnosis level, and insurance status. In this sense, our

empirical findings may suggest that patients are fairly consistent with physicians in making

drug choices based on unobserved physician-level characteristics. The positive and significant

covariance between bρi1 and bρi2 suggests that physicians who prefer Levitra to Cialis also tend

to prefer Viagra to Cialis. Finally, a relative large value of variance of bqi suggests a large

heterogeneity of patient drug requests across physicians and is consistent with the data

pattern that shows a large number of physicians never reported any drug requests.

6 Conclusion

Direct-to-consumer advertising by pharmaceutical companies is being argued to be effective

to potential patients because it informs them of symptoms as well as availability of treatment

options. Having better access to medical information, patients now are increasingly inclined

to assert their preferences in health care via drug requests. Decision making by physicians

on what drug to prescribe thus may become affected by drug requests from these informed

patients as well as direct-to-physicians promotions. On the other hand, patients’ decisions

to request a particular drug might not be independent of their physicians’ prescription de-

cisions. These various factors form an interactive system in which the behaviors of interest

are influenced by other factors, which in turn are influenced by the observed behaviors of

physician reporting and a patient asking for a drug. Therefore, a unidimensional modeling

approach with a narrower focus often fails to capture the full complexity of the situation and

may produce an overly simplistic depiction of the behavior, which calls for a joint model to

control for the interdependence of patient drug requests and physician prescriptions. In this

paper we have developed a new zero-inflated multinomial (ZiMNL) joint model to account

for the different sources of extra zeros and correlation between patient request and physician

prescription behavior. The proposed joint model is flexible and new in separating the two

sources of zeros and developing the interaction effect in a nonlinear setting.
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Empirically, we mainly find that (1) the triggering of drug requests by DTCA is compli-

cated with category level DTCA reducing patients’ probability of making drug requests and

drug specific DTCA driving drug requests for the advertised drug; (2) patient characteristics

may play a role in the impact of DTCA on drug requests and the impact of patient requests

on physician prescription decisions; (3) patient drug requests have a significant impact on

physician prescription decisions and patients can be consistent with physicians in choosing a

drug based on patient diagnosis level and some unobserved factors; (4) there are significant

correlations among physician-level random effects that drive both patient drug requests and

physician prescription decisions, which validates the joint modeling approach.

Our empirical findings have important managerial and public policy implications. For

example, our study suggests that the overcompetition on DTCA may backfire the pharma-

ceutical firms and shrink the overall market (overall fewer requests for ED drugs), although

a firm’s heavy DTCA may help a firm to gain market share via patients’ drug requests.

Our finding also suggests that companies might benefit by focusing more on elderly patients,

given that their drug requests are more likely to be accommodated by physicians and they are

not less likely to be influenced by brand-specific DTCA than young patients. From a public

policy perspective, patient requests for specific brand drugs represent an important right to

participate in their medical decisions. Mechanisms that generate appropriate drug requests

by minority patients will be helpful in reducing race/ethnicity disparity in health care be-

cause minority patient requests are more likely to be accommodated by physicians. Our

empirical findings suggest that patients and physicians are fairly consistent in making drug

choices based on observed patient diagnosis level and unobserved factors at the physician

level, but are inconsistent in making drug choices based on patient age. On the other hand,

the risk of worsening race/ethnicity disparity on health care is possible if minority patients’

drug requests are inappropriate and physicians accommodate their requests for fear of being

perceived as discriminatory or exacerbating relationships with patients. With these con-

cerns, a public policy focusing on health providers aiming to reduce race/ethnicity disparity
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probably should stick to a race/ethnicity blind to avoid possible undesirable outcomes.

A few limitations of our work must be underlined. One major issue is not having the

physician demographic characteristics data, which limits our ability in modeling physician

reporting behaviors. Another limitation is that we do not observe individual patient exposure

to ED DTCA and have to rely on aggregate measurement of DTCA expenditure at the DMA

level. With such micro-level data available, future research can better link the DTCA and

patient drug requests. Notwithstanding these limitations, this research has developed a new

road map for the analysis of patient requests and physician prescription behavioral data.

40



References

Ai, C. & Norton, E. C. (2003), ‘Interaction terms in logit and probit models’, Economics

Letters 80, 123–129.

Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle,

in ‘International Symposium on Information Theory’, Springer New York, pp. 267–281.

Ansolabehere, S. & Iyengar, S. (1997), Going Negative: How Political Ads Shrink and Po-

larize the Electorate, The Free Press, New York.

Becker, G. & Newsom, E. (2003), ‘Socioeconomic status and dissatisfaction with health care

among chronically ill african americans’, Am J Public Health 93(5), 742–748.

Bell, R. A., Wilkes, M. S. & Kravitz, R. L. (1999), ‘Advertisement-induced prescription drug

requests: Patients’ anticipated reactions to a physician who refueses’, Journal of Family

Practice 48, 446–452.

Belloni, A., Chen, D., Chernozhukov, V. & Hansen, C. (2012), ‘Sparse models and methods

for optimal instruments with an application to eminent domain’, Econometrica 80, 2369–

2429.

Berndt, E. R., Bui, L., Reiley, D. R. & Urban, G. L. (1995), ‘Information, marketing, and

pricing in the U.S. antiulcer drug market’, The American Economic Review 85(2), 100–

105.

Blendon, R. J., Scheck, A. C., K. Donelan, C. A. H., Smith, M., Beatrice, D. & Altman, D.

(1995), ‘How white and African Americans view their health and social problems. different

experiences, different expectations’, J. Am. Med Assoc. 273(4), 341–346.

Braun, M. & Bonfrer, A. (2011), ‘Scalable inference of customer similarities from interactions

data using dirichlet processes’, Marketing Sci. 30(3), 513531.

41



Brooks, S. P. & Gelman, A. (1997), ‘General methods for monitoring convergence of iterative

simulations’, Journal of Compputational and Graphical Statistics 7(4), 434–455.

Celeux, G., Forbes, F., Robert, C. P. & Titterington, D. M. (2006), ‘Deviance information

criteria for missing data models’, Bayesian Analysis 1(4), 651–673.

Ching, A., Erdem, T. & Keane, M. (2009), ‘The price consideration model of brand choice’,

Journal of Applied Econometrics 24(3), 393–420.

Ching, A. T. & Ishihara, M. (2010), ‘The effects of detailing on prescribing decisions under

quality uncertainty’, Quant. Marketing and Econom. 8(2), 123–165.

Ching, A. T. & Ishihara, M. (2012), ‘Measuring the informative and persuasive role of

detailing on prescribing decisions’, Management Sci. 58(7), 1374–1387.

D., S. (2004), Statement of the American College of Physicians to the Senate Special Com-

mittee on Aging: The Hearing on the Impact of Direct-to-Consumer Advertising on Seniors

Health and Health Care Costs.

Dong, X. J., Manchanda, P. & Chintagunta, P. K. (2009), ‘Quantifying the benefits of

individual level targeting in the presence of firm strategic behavior’, J. of Marketing Res.

46, 207–221.

Ferguson, T. S. (1973), ‘A Bayesian analysis of some nonparametric problems’, Annals of

Statistics 1(2), 209–230.

Ferguson, T. S. (1974), ‘Prior distributions on spaces of probability measures’, Annals of

Statistics 2(4), 615–629.

Ghosh, P. & Albert, P. S. (2009), ‘A Bayesian analysis for longitudinal semicontinuous data

with an application to an acupuncture clinical trial’, Computational Statistics and Data

Analysis 53, 699–706.

42



Gönül, F. F., Carter, F., Petrova, E. P. & Srinivasan, K. (2001), ‘Promotion of prescription

drugs and its impact on physicians’ choice behavior’, J. Marketing 65(3), 79–90.

Hatfield, L. A., Boye, M. E., Hackshaw, M. D. & Carlin, B. P. (2012), ‘Multilevel Bayesian

models for survival times and longitudinal patient-reported outcomes with many zeros’,

J. Amer. Statist. Assoc. 107, 875–885.

Hibbard, J. H., Greene, J. & Overton, V. (2013), ‘Patients with lower activation associated

with higher costs; delivery systems should know their patients’ ‘scores”, Health Affairs

32(2), 216–222.

Hoek, J. & Gendall, P. (2003), ‘Direct to consumer advertising of prescription medicines: A

consumer survey’, Palmerston North: Department of Marketing, Massey University .

James, L. D. & Vila, B. (2014), ‘Racial and ethnic bias in decisions to shoot seen through a

stronger lens: Experimental results from high-fidelity laboratory simulations’, Journal of

Experimental Criminology 10(3), 323–340.

Jiang, B., Elliott, M. R., Sammel, M. D. & Wang, N. (2015), ‘Joint modeling of cross-

sectional health outcomes and longitudinal predictors via mixtures of means and variances’,

Biometrics 71(2), 487–497.

Lachenbruch, P. A. (2002), ‘Analysis of data with excess zeros’, Statictical Methods in Medical

Research 11, 297–302.

Lee, D. & Beqley, C. E. (2011), ‘Physician switching after drug request refusal’, Health

Marketing Quarterly 28(4), 304–316.

Li, Y. & Ansari, A. (2014), ‘A Bayesian semiparametric approach for endogeneity and het-

erogeneity in choice models’, Management Science 60(5), 1161–1179.

Liu, Q. & Gupta, S. (2011), ‘Understanding the impact of direct-to-consumer advertising on

43



patients? behavior and the public policy implication’, International Journal of Research

in Marketing 28, 205–217.

Liu, Q., Gupta, S., Venkataraman, S. & Liu, H. (2016), ‘An empirical model of drug detailing:

Dynamic competition and policy implications’, Management Sci. 62(8), 2321–2340.

Liu, Q., Steenburgh, T. & Gupta, S. (2015), ‘The cross attributes flexible substitution logit:

Uncovering category expansion and share impacts of marketing instruments’, Marketing

Sci. 34(1), 144–159.

Lunn, D. J. (2003), ‘WinBUGS Development Interface (WBDev)’, ISBA Bulletin 10(3), 10–

11.

Montagna, S., Tokdar, S. T., Neelon, B. & Dunson, D. B. (2012), ‘Bayesian Latent Factor

Regression for Functional and Longitudinal Data’, Biometrics 68(4), 1064–1073.

Neelon, B., Ghosh, P. & Loebs, P. F. (2013), ‘A spatial Poisson hurdle model for exploring

geographic variation in emergency department visits’, Journal of the Royal Statistical

Society. Series A: Statistics in Society 176(2), 389–413.

Nerlove, M. & Arrow, K. J. (1962), ‘Optimal advertising policy under dynamic conditions’,

Economica 29(May), 129–142.

NIH Consensus Conference (1993), ‘NIH consensus development panel on impotence’, Jour-

nal of the American Medical Association 270, 83–90.

Norton, E. C., Wang, H. & Ai, C. (2004), ‘Computing interaction effects and standard errors

in logit and probit models’, The Stata Journal 4(2), 154–167.

Peck, B. M. (2011), ‘Age-related differences in doctor-patient interaction and patient satis-

faction’, Current Gerontology and Geriatrics Research 2011, 1–10.

Petrin, A. & Train, K. (2010), ‘A control function approach to endogeneity in consumer

choice models’, J. of Marketing Res. 47(1), 3–13.

44



Rizopoulos, D., Verbeke, G. & Molenberghs, G. (2008), ‘Shared parameter models under

random effects misspecification’, Biometrika 95(1), 63–74.

Sethuraman, J. (1994), ‘A constructive definition of dirichlet priors’, Statistica Sinica 4, 639–

650.

Spiegelhalter, D. J., Abrams, K. R. & Myles, J. P. (2004), Bayesian Approaches to Clinical

Trials and Health-Care Evaluation, Wiley.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. (2002), ‘Bayesian

measures of model complexity and fit’, Journal of the Royal Statistical Society. Series B:

Statistical Methodology 64(4), 583–616.

Staiger, D. & Stock, J. (1997), ‘Instrumental variables regression with weak instruments’,

Econometrica 65(3), 557–586.

Stevenson, F. A., Barry, A. C., Britten, N., Barber, N. & Bradley, C. P. (2000), ‘Doctor-

patient communication about drugs: The evidence for shared decision making’, Soc. Sci.

Medicine 50, 829–840.

Sturtz, S., Ligges, U. & Gelman, A. (2005), ‘R2WinBUGS: a package for running WinBUGS

from R’, Journal of Statistical Software 12, 1–16.

Voleti, S., Kopalle, P. & Ghosh, P. (2015), ‘An interproduct competition model incorporat-

ing branding hierarchy and product similarities using store-level data’, Management Sci.

61(11), 27202738.

Wooldridge, J. M. (2015), Introductory Econometrics: A Modern Approach, Cengage Learn-

ing; 5th edition, Mason, OH.

Yang, M. (2010), ‘Semiparametric Bayes hierarchical models with mean and variance con-

straints’, Computational Statistics and Data Analysis 54, 2172–2186.

45



Yi, J. C. (2008), ‘An expert system to derive carryover effect for pharmaceutical sales de-

tailing optimization’, Expert Systems with Applications 34(3), 1742–1753.

URL: http://www.sciencedirect.com/science/article/pii/S0957417407000516

Zhang, M., Strawderman, R. L., Cowen, M. E. & Wells, M. T. (2006), ‘Bayesian inference

for a two-part hierarchical model: An application to profiling providers in managed health

care’, J. Amer. Statist. Assoc. 101, 934–945.

Zou, H. & Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’,

Journal of the Royal Statistical Society B 67, 301–320.

46


	Ask Your Doctor If this Product is Right for You: A Bayesian Zero-Inflated Multinomial Joint Model for Patient Drug Requests and Physician Prescriptions

