ON AN EVALUATION AND OPTIMIZATION MODEL FOR MEDIA PLANNING

by
A.K. RAO \& M.R. RAO*

March 1993

INDIAN INSTITUTE OF MANAGEMENT BANGALORE

A.K. Rao
M.R. Rao*

Indian Institute of Management, Bangalore.

Abstract

In media planning, the media planner has to decide on the optimal number of insertions to be made in various media vehicles so as to maximize some measure of effectiveness. The parameters such as Reach, Gross Opportunities-To-See, Average Opportunities-To-See, Cost Per Person Reached etc. have to be evaluated for arriving at the optimal decision. In the past, researchers have developed an optimization model for determining the ideal combination of advertisement insertions that maximizes Reach. The constraints considered consist of upper bounds on the number of insertions in a vehicle and an upper bound on the total number of insertions in all vehicles. The optimal solution was obtained using dynamic programming. In this paper it is shown that the optimal solution can be obtained easily without using dynamic programming. A solution method is developed for the general case when there are lower and upper bounds on the number of insertions in each vehicle and also an upper bound on the total number of insertions. The problem of maximizing Reach when there is a budget constraint is also considered. A simple solution method is developed for some specified values of the budget. For other values of the budget, dynamic programming can be used to obtain an optimal solution.

1. INTRODUCTION

In a recent paper, Raghavendra [1] developed an optimization model to determine the number of insertions in various media vehicles to maximize Reach. The optimal solution is derived using dynamic programming. He also described a method of evaluation of various measures of advertising effectiveness like Reach, Gross Opportunities- To- See (GOTS), Average Opportunities-To-See (AOTS),

[^0]and Cost Per Person Reached. An evaluation model based on binomial distribution for computing these basic measures is also given. These models for evaluation and optimization were illustrated witr. the National Readership Survey (NRS) data base of India. In the Evaluation Model for Media Planning in India, Raghavendra estimatec the unduplicated readership of a vehicle sequentially, after ranking and arranging the vehicles in descending order of the target group readership. It was also mentioned that any procedure of ordering of vehicles can be followed. In this note, it is showr that the ordering of vehicles will have a bearing on the evaluations and the optimal solution. For solving the optimizatior problem of maximizing Reach, dynamic programming method was used. Here it is shown that Reach is a concave function and consequently the optimal value can be obtained more easily by calculatinc incremental Reach. It is also shown that the table given in [1] for maximum Reach for a specified total number of insertions in all vehicles and the corresponding cost cannot be used to find the optimal number of insertions in the vehicles which maximizes Reach for a given budget.

2. notation

The same notation as used in [1] is followed with slight modification.

M = Number of media vehicles considered in the advertisement campaign.

3. EFFECT OF RANKING VEHICLES ON OPTIMAL SOLUTION

A method for estimating unduplicated reach is suggested in [1]. After the media vehicles are ranked and arranged in descending order of target group readership, the unduplicated readership (Reach) of a vehicle is estimated sequentially as follows, with $d_{1 j}$ expressed as a fraction. It may be noted that this is an approximation to calculate Reach.

$$
\begin{aligned}
& M_{1}=N_{1} \\
& M_{1}=N_{1} \quad \prod_{j=1}^{i-1}\left(1-d_{1 j}\right) ; i=2,3, \ldots, M .
\end{aligned}
$$

The optimal solution for the problem of maximizing Reach depends on the ranking of the vehicles.

This is illustrated with the same example given in [1] for two specific values of $s=5$ and 10 .

For $s=5$, the optimal solution is $X_{1}=2, X_{2}=1, X_{3}=1, X_{4}=1$ and the other X_{1} 's are zero i.e. 2 insertions in ILL Wkly, one insertion each in Indian Express, Screen and Sunday Mid-Day.

For $s=10$, the optimal solution is $X_{1}=3, X_{2}=2, X_{3}=2, X_{4}=1$, $X_{5}=1, X_{7}=1$ and the other $X_{1}{ }^{\prime}$ s are zero i.e. 3 insertions in

ILL Wkly, 2 insertions each in Indian Express and Screen, and one insertion each in Sunday Mid-Day, Daily and Hitvada.

Suppose these 8 media vehicles are arranged in some other order, say, Daily, Economic Times, Hitavada, Indian Express, ILL Wkly India, Screen, Sunday Mid-Day and Bombay. This ordering is the same as in Table 3 of [1]. The duplication of readership, $d_{1 j}$ expressed as a fraction is taken from the lower diagonal of Table 3 in [1]. This is reproduced below in Table 1.

Table 1
Duplication of Readership among the Chosen Publications

Publication	1	2	3	4	5	6	7	8
1. Daily	0.00							
2. Economic Times	0.26	0.00						
3. Hitavada	0.00	0.00	0.00					
4. Indian Express	0.15	0.07	0.01	0.00				
5. Ill Wkly India	0.17	0.07	0.03	0.32	0.00			
6. Screen	0.08	0.04	0.03	0.22	0.20	0.00		
7. Sunday Mid-Day	0.29	0.09	0.00	0.33	0.27	0.07	0.00	
8. Bombay	0.22	0.20	0.00	0.47	0.38	0.07	0.33	0.00

The unduplicated Reach values for tnis ordering of vehicles as calculated by the method given in [1] is given in Table 2.

Table 2: Unduplicated Readership for Media Vehicles After Reordering

S.No.	Media Vehicle	Prob.of Exposure	Target Group Readership (in 000)	Unduplicated Reach (in '000)
1	Daily	0.70	247	247
2	Economic Times	0.72	78	58
3	Hitavada	0.74	134	134
4	Indian Express	0.71	492	385
5	ILL Wkly India	0.69	513	261
6	Screen	0.60	283	151
7	Sunday Mid-Day	0.77	253	74
8	Bombay	0.59	144	18

In the above table, the unduplicated Reach values are rounded to the nearest thousand.

For this ordering of vehicles, the optimal solutions are :
For s = 5,
$X_{1}=1, X_{2}=0, X_{3}=1, X_{4}=1, X_{5}=1, X_{6}=1, x_{7}=0, X_{8}=0$ i.e. 1 insertion each in Daily, Hitvada, Indian Express, ILL Wkly and Screen.

For $s=10$,
$x_{1}=2, x_{2}=1, x_{3}=1, x_{4}=2, x_{5}=2, x_{6}=1, x_{7}=1, x_{8}=0$ i.e. 2 insertions each in Daily, Indian Express and ILL Wkly and one insertion each in Economic Times, Hitvada, Screen and Sunday MidDay.

This solution is different from the one obtained earlier.
This shows that the ordering of the vehicles is important and that the optimal solution depends on the ordering of publications.

4. MAXIMIZING REACH

The Reach from vehicle i if X_{1} insertions are made in it is given by :

$$
R_{1}\left(X_{1}\right)=\sum_{r=1}^{X_{1}} M_{1} Z_{1}\left(r, X_{1}\right)=M_{1}\left[1-Z_{1}\left(0, X_{1}\right)\right]
$$

As $Z_{1}\left(0, X_{1}\right)=\left(1-p_{1}\right)^{x_{1}}$, we have

$$
R_{1}\left(X_{1}\right)=M_{1}\left(1-q_{1}^{x_{1}}\right) \quad \text { where } q_{1}=1-p_{1}
$$

Taking derivatives of $R_{1}\left(X_{1}\right)$, the second derivative is

$$
-M_{1}\left(\ln q_{1}\right)^{2} q_{1}^{X_{1}}
$$

which is negative since $0<\mathrm{q}_{1}<1$ and M_{1} is positive.

Hence $R_{1}\left(X_{1}\right)$ is a concave function and

$$
R(X)=\sum_{i=1}^{M} R_{1}\left(X_{1}\right)
$$

is a concave function of X .
Raghavendra [1], suggested a solution procedure for maximizing Reach using dynamic programming. He considered constraints consisting of upper limits on the number of insertions in each vehicle and also an upper limit on the total number of insertions in all vehicles.

A direct method of arriving at the optimal solution without using dynamic programming is given below for a more general situation when there are lower and upper bounds on the number of insertions in each vehicle and an upper bound on the total number of insertions. We also give a solution method when there is a constraint on the budget.

4.1 SOLUTION PROCEDURE

Let L_{1} and U_{1} be the lower and upper bounds on the number of insertions in vehicle i, $i=1,2, \ldots, M$ and U the upper bound on the number of insertions on the total number of insertions in all vehicles. Let C be the total budget available. We consider the following two problems.

Problem 1:

$$
\text { Maximize } R(X)=\sum_{i=1}^{M} M_{1}\left(1-q_{1}^{X_{1}}\right)
$$

subject to:

$$
\sum_{i=1}^{\cdot M} X_{1} \leq U
$$

$$
L_{1} \leq X_{1} \leq U_{1} \text { and integer } ; i=1,2, \ldots, M
$$

We assume, without loss of generality, that

$$
U<\sum_{i=1}^{M} U_{1}
$$

for otherwise the optimal solution is $X_{1}=U_{1} ; i=1,2, \ldots, M$.

Problem 2:

$$
\text { Maximize } R(X)=\sum_{i=1}^{M} M_{1}\left(1-q_{1}^{x_{1}}\right)
$$

subject to:

$$
\begin{gathered}
\sum_{i=1}^{M} C_{1} X_{1} \leq C \\
L_{1} \leq X_{1} \leq U_{i} \text { and integer, } i=1,2, \ldots, M
\end{gathered}
$$

We assume, without loss of generality, that

$$
C<\sum_{i=1}^{M} C_{1} U_{1}
$$

for otherwise the optimal solution is $X_{1}=U_{1} ; i=1,2, \ldots, M$.

4.1 OPTIMAL SOLUTION TO PROBLEM 1:

We first transform the problem by introducing integer variables Y_{1} such that

$$
Y_{1}=X_{1}-L_{1} \quad \text { for } i=1,2, \ldots, M
$$

Let

$$
\begin{aligned}
& s_{1}=U_{1}-L_{1} \quad \text { for } i=1,2, \ldots, M \text { and } \\
& s=U-\sum_{i=1}^{M} L_{i}
\end{aligned}
$$

Note that $s<\sum_{i=1}^{M} s_{1}$.
Problem 1 now becomes:
(P1): Maximize $\bar{R}\left(Y_{1}\right)=\sum_{i=1}^{M} \bar{R}_{1}\left(Y_{1}\right)=\sum_{i=1}^{M} M_{1}\left(1-q_{1}^{L_{1}+Y_{1}}\right)$
subject to :

$$
\sum_{i=1}^{M} Y_{1} \leq s
$$

$$
0 \leq Y_{1} \leq s_{1} \text { and integer ; i }=1,2, \ldots, M .
$$

Taking derivatives, it follows that $\bar{R}_{1}\left(Y_{1}\right)$ is a concave function and hence $\bar{R}(Y)$ is a concave function.

In order to solve (P1), we start with all $Y_{1}=0$. We successively increase the value of some Y, by 1 from its current value. This process is repeated until $\sum_{i=1}^{M} Y_{1}$ is equal to s.

The steps involved are given below.
Step 0: Let $Y_{1}=0, i=1,2, \ldots, M$.
Step 1: If $\sum_{i=1}^{M} Y_{1}=s$ then stop.
Otherwise, go to step 2.
Step 2: Let j be such that

$$
\begin{aligned}
M_{j} q_{j}^{L_{j}+Y_{j}}\left(1-q_{j}\right) & =\operatorname{Max}\left\{M_{1} q_{1}^{L_{1}+Y_{1}}\left(1-q_{i}\right)\right\} \\
& Y_{i}<s_{i} \\
&
\end{aligned}
$$

Set $Y_{j}=Y_{j}+1$ and return to step 1.

Lemma 1: The values of Y_{1} arrived at by the above procedure are optimal for (P1).

Proof:
Replace Y_{1} by s_{1} zero-one variables, $Z_{1 k} ; k=1,2, \ldots, s_{1}$ such that $Z_{i k} \geq Z_{1(k+1)} ; k=1,2, \ldots,\left(s_{1}-1\right)$.

Now

$$
\bar{R}_{1}\left(Y_{1}\right)=\sum_{i=1}^{s_{1}} \bar{R}_{1 k} Z_{1 k} \text { where } \bar{R}_{1 k}=M_{1} q_{i}^{L_{1}+k-1}\left(1-q_{1}\right)
$$

Here, $\bar{R}_{1 k}$ is the incremental Reach obtained by setting $Y_{1}=k$ instead of $Y_{1}=k-1$.

Then (P1) is equivalent to

$$
\text { Maximize } \sum_{i=1}^{M} \sum_{k=1}^{S_{1}} \bar{R}_{1 k} Z_{1 k}
$$

subject to :

$$
\begin{aligned}
& Z_{1 k} \geq Z_{1(k+1)}, \quad k=1,2, \ldots, s_{1}-1, i=1,2, \ldots, M \\
& \sum_{i=1}^{M} \sum_{k=1}^{S_{1}} Z_{1 k} \leq s \\
& Z_{1 k}=0 \text { or } 1, \quad \begin{array}{l}
i=1,2, \ldots, M \\
k=1,2, \ldots, s_{1} .
\end{array}
\end{aligned}
$$

But since $\bar{R}_{1}\left(Y_{i}\right)$ is a concave function, it follows that $\bar{R}_{1 k} \geq \bar{R}_{1 k+1}, k=1,2, \ldots s_{1}-1$. The constraints, $Z_{i k} \geq Z_{1(k+1)}$ are not necessary and the optimal solution is given by the above procedure. The above procedure is illustrated for the problem which was solved using dynamic programming in [1]. Here $\mathrm{L}_{1}=0$ for alli.

The rank order of 8 media vehicles, probability of exposure p_{1}, target group readership, unduplicated target group readership and
the maximum number of insertions s_{1} in each vehicle are given in Table 3 below.

Table 3:Probability of Exposure and Unduplicated Readership of Publications

Rank order No.	Publication	Probability of exposure	Target Group Reader ship('000)	Unduplicat ed Target Reader ship('000)	Max. No.of inser tions
1	Ill.Wkly	0.69	513	513	6
2	Indian Express	0.71	492	354	5
3	Screen	0.60	283	176	4
4	Sunday Mid- Day	0.77	253	115	3
5	Daily	0.70	247	144	22
6	Bombay	0.59	134	78	2
7	Hitavaūa	0.74	0.72	78	2
8	Economic Times			2	

From Table 3, the incremental reach, $\bar{R}_{1 k}$, for each vehicle is calculated by

$$
\begin{aligned}
& \bar{R}_{1 k}=M_{1} q_{1}^{k-1}\left(1-q_{1}\right), \begin{array}{l}
k
\end{array}=1,2, \ldots, s_{1}-1 \\
& i=1,2, \ldots, M .
\end{aligned}
$$

Table 4 gives the values of reach for each vehicle for different number of insertions and Table 5 gives the values of $\bar{R}_{i k}$.

Table 4: Values of Reach

Rank order	Publication	Number of Insertions						
		1	2	3	4	5	6	
1	Ill Wkly	354	464	498	508	512	513	
2	Indian Express	251	324	345	351	353	---	
3	Screen	106	148	165	171	---	---	
4	Sunday Mid- day	89	109	114	---	---	---	
5	Daily	46	60	64	65	---	---	
6	Bombay	13	18	---	---	--	---	
7	Hitvada	61	77	---	---	---	---	
8	Economic Times	5	6	---	---	---	---	

Table 5: Incremental Reach

Rank order	Publication	Number of Insertions									
		1	2	3	4	5	6				
1	Ill Wkly	354	110	34	10	4	1				
2	Indian Express	251	73	21	6	2	---				
3	Screen	106	42	17	6	---	---				
4	Sunday Mid- day	89	20	5	---	---	---				
5	Daily	46	14	4	1	---	---				
6	Bombay	13	5	---	---	---	---				
7	Hitvada	61	16	---	---	---	---				
8	Economic\|				 Times	5	1	---	---	---	---

The procedure given above to maximize Reach is equivalent to arranging the values of incremental Reach in descending order of
magnitude and the maximum Reach for any specified number of insertions s is given by the sum of the first s values of incremental Reach. The values of the incremental reach arranged in descending order are : 354, 251, 110, 106, 89, 73, 61, 46, 42, 34, 21, $20,17,16,14,13,10,6,6,15,5,5,4,4,2,1,1,1$. For instance, for $s=5$, the maximum Reach is equal to 910 which is the sum of the first five values. The first value of incremental Reach corresponds to the first insertion in vehicle 1 , the second value corresponds to the first insertion in vehicle 2 , the third value corresponds to the second insertion in vehicle 1 and so on. Thus the optimal solution is given by $X_{1}=2, X_{2}=1, X_{3}=1$ and $X_{4}=1$. By following the sequence of steps detailed above, the optimal Reach for a given number of cumulative insertions is calculated and given in Table 6.

Table 6: Optimal Reach

Cumulative No. of insertions	Optimal Reach	No. of insertions in vehicles							
		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
1	354	1	0	0	0	0	0	0	0
2	$354+251=605$	1	1	0	0	0	0	0	0
3	$605+110=715$	2	1	0	0	0	0	0	0
4	$715+106=821$	2	1	1	0	0	0	0	0
5	$821+89=910$	2	1	1	1	0	0	0	0
6	$910+73=983$	2	2	1	1	0	0	0	0
7	$983+61=1044$	2	2	1	1	0	0	1	0
8	$1044+46=1090$	2	2	1	1	1	0	1	0
9	$1090+42=1132$	2	2	2	1	1	0	1	0

Cumulative No. of insertions	Optimal Reach	No. of insertions in Vehicles							
		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
10	$1132+34=1166$	3	2	2	1	1	0	1	0
11	$1166+21=1187$	3	3	2	1	1	0	1	0
12	$1187+20=1207$	3	3	2	2	1	0	1	0
13	$1207+17=1224$	3	3	3	2	1	0	1	0
14	$1224+16=1240$	3	3	3	2	1	0	2	0
15	$1240+14=1254$	3	3	3	2	2	0	2	0
16	$1254+13=1267$	3	3	3	2	2	1	2	0
17	$1267+10=1277$	4	3	3	2	2	1	2	0
18	$1277+6=1283$	4	4	3	2	2	1	2	0
19	$1283+6=1289$	4	4	4	2	2	1	2	0
20	$1289+5=1294$	4	4	4	3	2	1	2	0
21	$1294+5=1299$	4	4	4	3	2	2	2	0
22	$1299+5=1304$	4	4	4	3	2	2	2	1
23	$1304+4=1308$	5	4	4	3	2	2	2	1
24	$1308+4=1312$	5	4	4	3	3	2	2	1
25	$1312+2=1314$	5	5	4	3	3	2	2	1
26	$1314+1=1315$	6	5	4	3	3	2	2	1
27	$1315+1=1316$	6	5	4	3	4	2	2	1
28	$1316+1=1317$	6	5	4	3	4	2	2	2

4.2 OPTIMAL SOLUTION TO PROBLEM 2:

Introducing variables $Y_{1}=X_{1}-L_{1} ; i=1,2, \ldots, M$ as in section 4.1, Problem 2 now becomes
(P2) : Maximize $\bar{R}(Y)=\sum_{i=1}^{M} M_{i}\left(1-q_{i}^{L_{1}+Y_{1}}\right)$
magnitude and the maximum Reach for any specified number of insertions s is given by the sum of the first s values of incremental Reach. The values of the incremental reach arranged in descending order are : 354, 251, 110, 106, 89, 73, 61, 46, 42, 34, 21, 20, 17, 16, 14, 13, 10, 6, 6, $5,5,5,4,4,2,1,1,1$. For instance, for $s=5$, the maximum Reach is equal to 910 which is the sum of the first five values. The first value of incremental Reach corresponds to the first insertion in vehicle 1 , the second value corresponds to the first insertion in vehicle 2 , the third value corresponds to the second insertion in vehicle 1 and so on. Thus the optimal solution is given by $X_{1}=2, X_{2}=1, X_{3}=1$ and $X_{4}=1$. By following the sequence of steps detailed above, the optimal Reach for a given number of cumulative insertions is calculated and given in Table 6.

Table 6: Optimal Reach

Cumulative No. of insertions	Optimal Reach	No. of insertions in Vehicles							
		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
1	354	1	0	0	0	0	0	0	0
2	$354+251=605$	1	1	0	0	0	0	0	0
3	$605+110=715$	2	1	0	0	0	0	0	0
4	$715+106=821$	2	1	1	0	0	0	0	0
5	$821+89=910$	2	1	1	1	0	0	0	0
6	$910+73=983$	2	2	1	1	0	0	0	0
7	$983+61=1044$	2	2	1	1	0	0	1	0
8	$1044+46=1090$	2	2	1	1	1	0	1	0
9	$1090+42=1132$	2	2	2	1	1	0	1	0

Cumulative No. of insertions	Optimal Reach	No. of insertions in Vehicles							
		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
10	$1132+34=1166$	3	2	2	1	1	0	1	0
11	$1166+21=1187$	3	3	2	1	1	0	1	0
12	$1187+20=1207$	3	3	2	2	1	0	1	0
13	$1207+17=1224$	3	3	3	2	1	0	1	0
14	$1224+16=1240$	3	3	3	2	1	0	2	0
15	$1240+14=1254$	3	3	3	2	2	0	2	0
16	$1254+13=1267$	3	3	3	2	2	1	2	0
17	$1267+10=1277$	4	3	3	2	2	1	2	0
18	$1277+6=1283$	4	4	3	2	2	1	2	0
19	$1283+6=1289$	4	4	4	2	2	1	2	0
20	$1289+5=1294$	4	4	4	3	2	1	2	0
21	$1294+5=1299$	4	4	4	3	2	2	2	0
22	$1299+5=1304$	4	4	4	3	2	2	2	1
23	$1304+4=1308$	5	4	4	3	2	2	2	1
24	$1308+4=1312$	5	4	4	3	3	2	2	1
25	$1312+2=1314$	5	5	4	3	3	2	2	1
26	$1314+1=1315$	6	5	4	3	3	2	2	1
27	$1315+1=1316$	6	5	4	3	4	2	2	1
28	$1316+1=1317$	6	5	4	3	4	2	2	2

4.2 OPTIMAL SOLUTION TO PROBLEM 2:

Introducing variables $Y_{1}=X_{1}-L_{1} ; i=1,2, \ldots, M$ as in section 4.1, Problem 2 now becomes
(P2) : Maximize $\bar{R}(Y)=\sum_{i=1}^{M} M_{i}\left(1-q_{i}^{L_{1}+Y_{i}}\right)$
subject to :

$$
\begin{aligned}
& \sum_{i=1}^{M} C_{1} Y_{1} \leq B \\
& 0 \leq Y_{1} \leq S_{1} \quad \text { and integer, } i=1,2, \ldots, M
\end{aligned}
$$

where $B=C-\sum_{i=1}^{M} C_{1} L_{1}$.

It has been shown above that $\bar{R}(Y)$ is a concave function of Y. The optimal solution for the above problem can be obtained easily for some specified values of the budget B.

Define $\bar{R}_{1 k}=M_{1} q_{i}^{L_{1}+k-1}\left(1-q_{1}\right) ; k=1,2, \ldots, s_{1}-1, i=1,2, \ldots M$.
Note that $\bar{R}_{1 k}$ is the incremental Reach obtained by setting $Y_{1}=k$ instead of $k-1$.

Define $R_{1 k}=\bar{R}_{1 k} / C_{1} ; i=1,2, \ldots, M, k=1,2, \ldots, s_{1}$.
Arrange $\mathrm{R}_{1 \mathrm{k}}$ in descending order, breaking ties arbitrarily. Let the nth value be denoted by $\hat{R}_{1(n), k(n)}, n=1,2, \ldots$. . Suppose the budget value B is such that

$$
B=C_{1(1)}+C_{1(2)}+C_{1(3)}+\ldots .+C_{1(n)} \text { for some } n \text {. Then the }
$$

optimal solution to (P2) can be easily obtained by a process similar to the one given in section 4.1. The solution procedure is given below.

Step 0: Let $Y_{1}=0, i=1,2, \ldots, M$.
Step 1: If $\sum_{i=1}^{M} C_{1} Y_{1}=B$, then stop. We have the optimal solution. Otherwise go to step 2.

Step 2: Let j be such that

$$
\begin{aligned}
M_{y} q_{j}^{L_{j}+Y_{1}}\left(1-q_{j}\right) / C_{j} & =\operatorname{Max}\left\{M_{1} q_{1}^{L_{1}+Y_{1}}\left(1-q_{1}\right) / C_{j}\right\} \\
& { }_{Y_{1} \in(1,2, \ldots M)}<S_{1}
\end{aligned}
$$

In case there is a tie, select any one j.
Set $Y_{j}=Y_{j}+1$ and return to step 1.

Claim 2 : The solution arrived at by the above procedure is optimal to problem (P2).

The proof is similar to the one given for Claim 1.
By following the sequence of steps detailed above, the optimal Reach for specified budget values is calculated and given in Table 9. Table 7 gives the assumed cost per insertion for the various publications. Note that these values are the same as given in Table 1 of [1].

Table 7: Assumed Cost Per Insertion

Cl. No	Publication
1	Cost per Insertion in Rs. (in '000)
2	Indian Express

Table 8 gives the incremental Reach values $\mathrm{R}_{1 \mathrm{k}}$.

Table 8 : Incremental Reach $\left(R_{1 x}\right)$ per Rs. thousand

Rank Order	Publication	Number of Insertions					
		1	2	3	4	5	6
1	ILL Wkly India	22.12	6.88	2.12	0.62	0.25	0.06
2	Indian Express	17.93	5.21	1.50	0.43	0.14	---
3	Screen	5.05	2.00	0.81	0.29	---	---
4	Sunday Mid-Day	3.56	0.80	0.20	---	---	---
5	Daily	4.60	1.40	0.40	0.10	---	---
6	Bombay	0.46	0.18	---	---	---	---
7	Hitavada	3.05	0.80	---	---	---	---
8	Economic Times	0.42	0.08	---	---	---	---

Table 9 gives the optimal number of insertions for specified budgets.

Table 9 : Optimal Number of Insertions for

Specified Budget in Rs. (in '000)	Optimal Reach	Number of Insertions							
		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
16	354	1	0	0	0	0	0	0	0
30	$354+251=605$	1	1	0	0	0	0	0	0
46	$605+110=715$	2	1	0	0	0	0	0	0
60	$715+73=788$	2	2	0	0	0	0	0	0
81	$788+106=894$	2	2	1	0	0	0	0	0
91	$894+46=940$	2	2	1	0	1	0	0	0
115	$940+89=1029$	2	2	1	1	1	0	0	0
135	$1029+61=1090$	2	2	1	1	1	0	1	0
151	$1090+34=1124$	3	2	1	1	1	0	1	0
172	$1124+42=1166$	3	2	2	1	1	0	1	0
186	$1166+21=1187$	3	3	2	1	1	0	1	0

Specified Budget in Rs. (in 1000)	Optimal Reach	Number of Insertions							
		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}
196	$1187+14=1201$	3	3	2	1	2	0	1	0
217	$1201+17=1218$	3	3	3	1	2	0	1	0
237	$1218+16=1234$	3	3	3	1	2	0	2	0
262	$1234+20=1254$	3	3	3	2	2	0	2	0
278	$1254+10=1264$	4	3	3	2	2	0	2	0
306	$1264+13=1277$	4	3	3	2	2	1	2	0
320	$1277+6=1283$	4	4	3	2	2	1	2	0
332	$1283+5=1288$	4	4	3	2	2	1	2	1
342	$1288+4=1292$	4	4	3	2	3	1	2	1
363	$1292+6=1298$	4	4	4	2	3	1	2	1
379	$1298+4=1302$	5	4	4	2	3	1	2	1
404	$1302+5=1307$	5	4	4	3	3	1	2	1
432	$1307+5=1312$	5	4	4	3	3	2	2	1
446	$1312+2=1314$	5	5	4	3	3	2	2	1
456	$1314+1=1315$	5	5	4	3	4	2	2	1
468	$1315+1=1316$	5	5	4	3	4	2	2	2
484	$1316+1=1317$	6	5	4	3	4	2	2	2

For other values of the budget B, we can solve (P2) by dynamic programming where the stages correspond to media vehicles $1,2, \ldots$... and the states correspond to the budget arailable.

In [1], a table [Table 6] of results of Optimization for maximizing Reach is given. The total costs corresponding to specified total number of insertions were also calculated. It was stated that if the limits on budget are known then the table could be used to arrive at a media plan which gives maximum Reach for a given budget. But, this is not correct. For example, suppose we have a
budget of Rs. 92,000. As per the Table 6 in [1], the maximum Reach corresponding to this budget is 908,000 which is attained by having a total of 5 insertions, i.e $X_{1}=2, X_{2}=1, X_{3}=1, X_{4}=1$, $X_{5}=X_{7}=X_{7}=X_{8}=0$. It can be seen from Table 9 above that if we have 6 insertions so that $X_{1}=2, X_{2}=2, X_{3}=1, X_{5}=1$, $X_{4}=X_{6}=X_{7}=X_{8}=0$, then the total cost will be Rs. 91,000 and the corresponding Reach will be 940,000 . Hence, a more systematic procedure as given in section 4.2 is required for arriving at a media plan which maximizes Reach for a given budget.

5. SUMMARY

In this paper it is shown that the ordering of vehicles has a bearing on the optimal solution which maximizes Reach. A simple and direct method of obtaining a media plan which maximizes unduplicated Reach is given when the constraint set consists of lower and upper bounds on the total number of insertions. The method is extended to the case when we have a budget constraint.

6. REFERENCES

[1] Raghavendra B.G.(1989), 'An Evaluation and Optimization Model for Media Planning', International Journal of Management and Systems, Vol. 5, No. 1.

[^0]: * On leave from New York University, New York.

