
ECONOMIC SIZING OF WAREHOUSES
SOME EXTENSIONS

by

A.K. RAO & M.R. RAO*

March 1993

INDIAN INSTITUTE OF MANAGEMENT
BANGALORE

WP-36

^Professors, Indian Institute of Management, Bangalore



ECONOMIC SIZING OF WAREHOUSES - SOME EXTENSIONS

A.K.RAO and M.R.RAO*

Indian Institute of Management, Bangalore, India.

ABSTRACT

In the past, researchers presented a linear programming
formulation for the economic sizing of warehouses when
demand is highly seasonal and public warehouse space is
available on a monthly basis. The static model was
extended for the dynamic sizing problem in which the
warehouse size is allowed to change over time. By
applying simplex routine, the optimal size of the
warehouse to be constructed could be determined . In this
paper, an alternative and simple method of arriving at an
optimal solution for the static problem is given. Four
extensions of the static model are given. These
extensions involve initial warehouse capacity,costs
varying over time, economies of scale in capital
expenditure and/or operating cost and stochastic version.
The dynamic warehouse sizing problem is shown to be a
network flow problem which could be solved by using
network flow algorithms. The structure of an optimal
solution is also given. The concave cost version of the
dynamic warehouse sizing problem is also discussed.

1. INTRODUCTION

In an earlier paper [5], it is shown that the static warehouse

sizing problem given by Hung and Fisk [3] can be solved easily

without using any standard linear programming routines. The

solution method consists of enumerating the costs corresponding to

(T+l) possible values of the warehouse size. In this paper, the

nature of the optimal solution is studied and a straight forward

method of arriving at the optimal size of private warehouse is

given. Four extensions of the static case are considered. These
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consist of initial warehouse capacity, costs varying with time,

economies of scale in capital expenditure and/or operating cost and

stochastic version. Methods of arriving at the optimal solution are

discussed. The dynamic warehouse sizing problem is shown to be a

network flow problem which could be solved by using network flow

algorithms. The structure of an optimal solution is derived. This

leads to an efficient dynamic programming algorithm for the concave

cost version of the dynamic warehouse sizing problem.

2. REVIEW AND NOTATION

Suppose the planning horizon consists of T periods. It is assumed

that the location for private warehouse is already determined. Any

amount of public warehouse space can be leased in any month t. For

each period t in the planning horizon, demands for the warehouse

space are estimated. In general, it is assumed that there are n

estimates, and for each estimate the probability of occurrence is

Pj , j = 1,2,...,n and X Pj = 1.
j

Ballou [1] showed that warehousing cost for period t can be

computed from the following formula:

C t j = Co X + Cv Y t j + Cp ( D t j - Y t j )

whe re

Ctj = warehousing cost in period t under demand estimate

schedule j;

Co = overheads and amortised capital expenditure per

sq.ft per period;

X = size of private warehouse, in sq.ft;
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Cv = variable private warehousing cost, per sq.ft.

of storage per period;

Cp = variable public warehousing cost,per ft2

of storage per period;

Ytj = amount of private warehouse space used in period t,

under estimate j;

Dtj = demand for storage space, in ft2 in period t,

under estimate j.

It is also assumed that only a fraction f of the private warehouse

space can be used for storage, so that:

Ytj = f X if Dtj > f X

= Dtj if Dtj < fX

The total expected cost for the planning horizon is:

T n

t=l j=
EC = E I Pj Ctj

Thus the problem of sizing a private warehouse is to determine the

warehouse size X and the allocation of storage, Ytj's such that EC

is minimized.

A simple alternative to Ballou's method of finding optimal

warehouse size was given by Hung and Fisk [3]. They used linear

programming formulation. They first replace, for each period t,

the set of demand estimates and their corresponding probabilities

of occurrence with the expected value of demand Dt:

n
Dt = J.P3 Dtj

Similarly, the amount of private warehouse space used in each
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period t under estimate j is replaced by Yt, the expected value of

warehouse space used in period t.

The linear programming formulation developed for the static problem

is as follows:
T

(P) : Minimize EC = I [ Co X + Cv Yt + Cp (Dt - Yt) ]
t=l

subject to :
Yt <> f X , t = 1,2, . . .,T

Yt < Dt , t = 1,2, ...,T

X £ 0 , Yt £ 0 , t = 1,2, . . ,,T

In this model, the amount of public warehouse space hired in period

t is (Dt - Yt) which can vary from period to period.

A simple method of arriving at an optimal solution without recourse

to linear programming is given in [5] . The method consists of

enumerating the total cost coresponding to (T+l) possible values of

the warehouse size.

3. ALTERNATIVE METHOD OF SOLUTION

We first make the variable substitution S = f.X and denote Co /f
T

by Cf and T Cf by Tf. Omitting the constant term L Cp Dt we
t=l

reformulate the problem as follows:

T
( P I ) : Z* = M i n EC = T f S + Z (Cv - Cp) Y t (1 )

t = l
s u b j e c t t o :

Yt < S , t = 1 , 2 , . . . , T (2)

Yt <> D t , t = 1 , 2 , . . . , T (3)

S > 0 , Yt £ 0 , t = 1 , 2 , . . . , T (4 )
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If any Dt = 0, then the corresponding Yt = 0 and it can be dropped

from the*problem. So without loss of generality we assume that

Dt > 0 for t = 1,2, . . .,T.

Each row of the constraint set has at most two ones. If a row has

two ones, then one of them is +1 and the other is -1. So, the dual

problem has variables with at most two ones in each column. If a

dual variable has two ones, then they are of opposite sign.

Remark 1 : The dual of problem (Px) is a network problem and hence

can be solved efficiently. However, as shown below, the problem can

be solved without applying network algorithm.

Let S* , Y* , t = 1,2,...,T be an optimal solution to (PI).

Remark 2 : Z* ^ 0. If Cp < Cv , then there exists an optimal

solution with S* = 0 and Z* = 0.

This follows from the structure of the objective function and the

constraints.

We henceforth assume that Cp > Cv .

Remark 3 : If Cp < Cv + Cf , then there exists an optimal solution

with S* = 0.

Proof:

Suppose Cp < Cv + Cf.

Now the objective function (1) is such that

T T
T Cf S + I ( Cv - Cp ) Yt > T Cf S + Z ( Cv - Cp ) S

t=l t=l

= T S ( Cv - Cp + Cf ) > 0.

where the first inequality follows from Yt < S , t=l,2,...,T and
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Cv - Cp < 0 while the last inequality follows from Cv - Cp + Cf £ 0.

Consequently S = 0 and Yt = 0, t = 1, 2, . . ., T is an optimal solution

to (PI) . •

We henceforth assume that Cp > Cv + Cf. We now show that an optimal

solution to (PI) can be obtained very easily without recourse to

linear programming.

We first sort the demands Dt in increasing order with ties broken

arbitrarily•

Let Dti) denote the demand in the i th sorted position where

D[±1 <> Dli+1] for i = 1,2, . . .,T-1.

Let u = [Tf/(CP - CV)J denote the largest integer less than or equal

to Tf / ( Cp - Cv ) . Note that 0 £ u £ T-l since Cp - Cv > Cf.

Let k = T - u.

Theorem 1 : There exists an optimal solution to (PI) such that

S « D[k). Moreover, S = DIkJ is a unique optimal solution if

i) DIk, = D[kn, or

ii) u = [ Tf /(Cp - Cv) J < Tf /(Cp - Cv) .

Proof: Let S* and Y[ , t = 1,2, ...,T be an optimal solution such

that S* • Df4);. Let Z* be the corresponding objective function value.

We first show that S* £ Dlkl.

Claim 1 : S* ̂  D m .

Proof t Suppose S* < D()c).

Let R - { t | Dt > S* } and r = | R | .

Note that r £ u+1 > Tf / (Cp - Cv) .



Let AS = Min { Dt - S* } > 0.
t€fc

Consider the following solution to (PI) which is clearly feasible:

S* = S* + AS

¥t - Y* + AS for t £ R

= Y*t otherwise.

Let Z be the corresponding objective function value.

Now Z* - Z* = Tf AS + I ( Cv - Cp ) AS
teR

= AS [ Tf + r ( Cv - Cp ) ]

< AS [ Tf + (Tf/(CP-Cv)) (Cv - Cp) ]

= 0

where the strict inequality follows from

|R| = r £ u+1 > Tf / (Cp - Cv) and ( Cv - Cp ) < 0.

This implies that Z < Z* which is a contradiction. Hence S*£D(k) .

Suppose now that S* > D(k) .

Let W = { t | Dt < S* } and w = |w| . Note that w > k = T-u.

Let AS = Min { S* - Dt } > 0 .
teW

Consider the following solution to (PI) which is clearly feasible:

S" = S* - AS

7t = Y; for tew

= Y* - AS otherwise

Let Z be the corresponding objective function value.

Now Z* - z" = Tf AS + L (Cv - Cp ) AS
tkw

^ AS [ Tf + u (Cv - Cp ) ]

> AS [ Tf + (Tf/(CP-Cv)) (Cv - Cp ) ] = 0 (5)

where the first inequality follows from T - |w| = T -w < u and
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( Cv - Cp ) < 0 while the second inequality follows from

u £ Tf /(Cp - Cv) and ( Cp - Cv ) < 0. This implies that Z* £ Z.

If Z* > Z, we have a contradiction.

Suppose Z* = Z. This implies that S, Yt , t = 1,2,...,T is an

alternate optimal solution to (PI). Furthermore, L = Z if and only

: euuality holds throughc\?t (5), i.e. if and only if

I - vt = u = Tf/ (Cp - Cv ) . Then k = T - u = w.

Since S* > D[k] and k, = w, it follows that D(k) < S* £ D[kn) and

S = S* - AS = D[k] . Consequently, S = D[k] is an alternate optimal

solution to (PI) and the first part of the theorem follows.

Now, as shown above, S = S* > D[k] is optimal to (PI), only if

S* <* D[k+1] and u = Tf/ (Cp - Cv ) . But this is impossible if

D[k] = D[k+1] or u < Tf / (Cp - Cv) . Thus the theorem follows. I

Remark 4 : If D[kn) > D[k) and u = Tf / ( Cp - Cv ), then there

exists arv optimal solution for all values of S such that

Dlkl £ S £ D[k+1].

Let Dj, j = l,2,...,q denote the q distinct values of the demands

DUJ in increasing order.

Let Wj = ( t | Dt > D
j } and wj = IwJ .

For each specified non-negative value of S, let

T
Z(S) = Tf S + Min Z ( Cv - Cp ) Yt

t = l

s u b j e c t t o : Yt £ S

Yt <> Dt , t = l , 2 , . . . , T
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Let Z'(S) denote the derivative of Z(S) at the values of S at which

it is differentiable.

Lemma 1 : Z(S) is a piecewise linear continuous function with

Z(0) = 0 and the break points at Dj, j = l,2,...,q. The derivative

of Z(S) is given by

Z' (S) = Tf + ( Cv - Cp ) T for 0 < S < D1

= Tf + ( Cv - Cp ) Wj for Dj < S < Dj+1

j = l / 2 / . . . , q - l

= Tf for Dq < S

Fur thermore ,

Z' (S) < 0 for S < D[kl and S * Dj for any j

Z'(S) > 0 for S > D[kl and S * Dj for any j

Z'(S) = 0 for D[k] < S < D{k+1] i f D[k] t D[k+1) and

u = Tf/ (Cp - Cv) .

Proof : The f u n c t i o n a l form and t h e d e r i v a t i v e of Z(S) fol low from

t h e r e l a t i o n s h i p s Cv < Cp/ Yt = Min { S, Dt } and t h e d e f i n i t i o n of

4. EXTENSIONS

We consider four extensions of the static model discussed in the

previous sections. These extensions consist of

i ) initial warehouse capacity

ii) costs varying over time

iii) economies of scale in capital expenditure and/or

operating cost and

iv) stochastic version given by Ballou.
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4.1 Initial Warehouse Capacity

Suppose there is an initial warehouse capacity of Xo > 0.

Let So = f Xo • Denoting U to be the additional private warehouse

to be constructed and S = U + So/ problem (PI) now becomes

T
( P2 ) Minimize Tf S + £ ( Cv - Cp ) Yt - Tf So

t=l

s u b j e c t t o Yt i S t = 1 , 2 , . . . , T (6)

0 £ Yt £ Dt t = 1 , 2 , . . . , T (7)

S £ So (8)

Let (P3) denote the problem (P2) without constraint (8) • Now

applying Theorem 1, an optimal solution

S = S\ Yt = y;, t = 1,2,...,T , to (P3) can be found.

If S* £ So , clearly U = S* - So, Yt = Yj, t = 1,2, . . ., T is an

optimal solution to (P2) . On the other hand, if S* < So, it follows

that (P2) has an optimal solution with S = So.

Consequently, if S* < So, an optimal solution to (P2) is given by

S = So, Yt = So for all t such that Dt ^ So and Yt = Dt for all t such

that Dt < So.

4.2 Costs varying over time

The variable costs Cv and Cp associated with private and public

warehouses are now time dependent. Let Cvt and Cpt respectively

represent the variable private and public warehouses cost in time

period t .
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Now the optimization problem is:

T
( P4 ) Minimize EC = Z = Tf S + I ( Cvt - Cpt ) Yt

t = l

subject to constraints (2) , (3) and (4) .

Note that if Cvt £ Cpt for any t, then the corresponding Yt will

be 0 in an optimal solution to (P4).

Let v = { t | Cvt < Cpt }

The problem (P4) is equivalent to

Z* = Min Tf S + £ ( Cvt - Cpt ) Yt
tev

subject to constraints (2), (3) and (4).

Remark 5 : As in Section 3, Z* < 0.

As in Section 3, we first sort the demands Dt, t e V in increasing

order with ties broken arbitrarily.

Let Dj, j = l,2,...,q denote the q distinct values of the sorted

demands Dt/ t e V , i.e. D
j < Dj+1 for j = l,2,...,q-l.

Let Wj = { te V | Dt > D
j } and

Cj = I ( Cpt - Cvt ) ; j = 1,2, . . . ,q.
tewj

Note that Cj > Cj+1 for j = l,2,...,q-l.

We now have the following result:
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Theorem 2 : i) If Tf £ Cx , then S = 0 is an optimal

solution to (P4).

ii) If Tf £ Cq , then S = D
q is an optimal solution

to (P4).

iii) Suppose CL £ Tf £ Ci+1 for some i, 1 £ i < q-1,

then S = D1 is an optimal solution to (P4) .

The proof of this theorem is similar to the proof of Theorem 1 and

the details are omitted,

4.3 Economies of Scale

Suppose there are economies of scale in the overheads and amortized

capital expenditure costs, i.e. this cost is a concave function,

say g(X), of the size of the private warehouse X. Making variable

substitution X = S/f and denoting h(S) = g(S/f), it follows that

h(S) is a concave function of S for S ^ 0 since f > 0.

The problem now becomes

T
(P5) Minimize h(S) + £ ( Cv - Cp ) Yt

t=l

subject to constraints (2), (3) and (4).

Since the objective function is a concave function and the

constraints are linear, it follows (see for instance Hadley [2])

that (P5) has an optimal solution which is an extreme point of the

polyhedron defined by the constraints (2), (3) and (4) . But a local

optimal solution is not necessarily a global optimal solution and

an enumeration of the extreme points is required to solve (P5). The

lemma below characterizes the extreme points and thereby implies
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that (P5) can be solved easily.

Lemma 2 : S = 0 or S =Dt for some t = 1,2,...,T in every

extreme point of the polyhedron defined by the

constraints (2), (3) and (4).

Proof : Let S= S* > 0, Y = Y*, t = 1,2,...,T be an extreme point

such that S* * Dt for any t. Suppose Y* > 0 for some t.

Since S* $ Dt , it follows that the slack variable in one of the

constraints Yt £ S or Yt £ Dt must be positive. On the other hand,

suppose Ŷ  = 0 for some t. Then the slack variable in both of the

above constraints must be positive since S and Dt are positive.

Thus for every t = 1,2,...,T, there are at least two distinct

variables, including possibly Yt but not counting S, which are

positive. Furthermore, since S > 0, we have at least 2T+1 variables

which are positive. But every extreme point can have at most 2T

variables positive, since there are only 2T constraints. Thus the

lemma follows.

Remark 6 : In order to solve (P5), we need to consider only T+l

values of S corresponding to 0 and Dt, t = 1,2,...,T.

4.4 Stochastic Case

The last extension we consider is the stochastic version given by

Ballou [ 1 ] . The demand in each period is now not known with

certainty but is specified by a discrete probability distribution.

For t = 1,2,...,T, let Dtj , j = 1,2, . . .nt be the possible demands

in period t with corresponding probabilities ptj , j = l,2,...,nt.
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Making the variable substitution S = f X and omitting the

T nt
constant term I 2 ptj Cp Dtj , the stochastic version of

t=l j=l

the problem can be formulated as a linear program as follows:

T n t

(P6) Minimize EC = Tf S + L Z [ p t j ( Cv - Cp ) ] Y t j

t=l j=l

subject to: Ytj £ S, t = 1,2,...,T; j = 1,2, ...,nt

Ytj < Dtj, t = 1,2,...,T; j * 1,2,...,nt

S £ 0, Ytj £ 0, t = 1,2,...,T; j = lf2#...#nt

Consider each combination of t and j as a separate time period.
T

We have X nt time periods. Now ptj ( Cv - Cp ) is the variable
t=l

cost which depends upon the time period represented by the

combination of t and j. Hence (P6) is identical to (P4) .

An optimal solution to (P6) is easily obtained as in the case of

<P4).

Remark 7 : In order to solve the stochastic version/ it is

incorrect to consider the expected demand in period t and solve the

associated problem (PI). For instance, the stochastic version as

given by Ballou [ 1 ] has an optimal solution with X = 28,953. But

if we take the expected demand and solve the associated problem

(PI) an optimal solution is given by X = 26,577.

5. Dynamic Warehouse Sizing Problem

The dynamic warehouse sizing problem as formulated by Hung and Fisk

[3] is as follows:
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T
Min E [ Co Xt + CJ Wt + C* Zt + Cv Yt + Cp ( Dt - Yt)

., t=l

subject to

Yt - f Xt £ 0 , t = 1,2, . . .,T.

Yt < Dt , t = 1,2, ...,T.

*t " Xt.j - Wt + Zt = 0 , t = l,2,...,T.

Xt, Yt, Wt, Zt S 0 , t = 1,2, . ..,T.

where

Xt = warehouse size in period t, Xo is given.

Wt = amount of expansion in period t

Zt = amount of reduction in period t

C* = per unit expansion cost in period t

Cj = per unit reduction cost in period t.

The definition of other variables and costs remain the same.

We assume that C* + C* ̂  0 for otherwise the problem is unbounded.

Let St = f Xt , Ut = f Wt and Vt = f Zt for t = 1,2,...,T.

Now the problem becomes

T
(P7) : Min (1/f) X [ Co St + Ĉ  Ut + C£ Vt + £ (Cv - Cp) Yt ]

t = l

s u b j e c t t o

Yt ~ St + g t = 0 , t = 1,2, ...,T (9)

St " St_! - Ut + Vt = 0 , t = 1 , 2 , . . . , T . (10)

Yt S Dt , t = 1,2, . . . , T (11)

S t , Yt, Ut, Vt, g t ^ 0 , t = 1 , 2 , . . . , T (12)

where g t / t = 1 , 2 , . . . , T a r e s l a c k v a r i a b l e s and So = f Xo.
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For t - 1,2,...,T-1, subtracting the t th equation of (9) from the

(t+1) th equation of (10), the constraints (9) and (10) are

equivalent to:

*t " St + gt = 0 , t = 1,2,...,T (13)

Sx - Ux + Vx = So , (14)

- Yc-i + St - Ut + Vt - gt.x = 0, t = 2,...,T (15)

Each variable has atmost two non-zero coefficients in equations

(13) to (15) . Furthermore, if a variable has two non-zero

coefficients, one of them is a +1 and the other is a -1.

Consequently (P7) is a network flow problem with upper bounds on

the variables Yt, t = 1,2,...,T given by (11). Thus (P7) can be

solved efficiently by using network flow algorithms.

Remark 8 : It can easily be shown that the dual of (P7) is also a

network flow problem with upper bounds.

Remark 9 : For every t, atmost one of Ut and Vt can be positive

in an optimal solution.

Next we study the structure of an optimal solution.

Adding the equations (13) to (15), we have

T T
- X Ut + I Vt + YT + gT = So
t=l t=l

T
Now, letting R = £ Vt + YT + gT , the above redundant equation

t=l
may be written as follows:



Figure 1 : Flow Circulation Network : Dynamic Version
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T
I Ut - R = - So and (16)

t=l

T
R - Z Vt - YT - gT = 0 (17)
t=l

Now the flow circulation form of (P7) is given by (11) to (17) . The

network corresponding to this flow circulation form is illustrated

in Figure 1 for T=6.

Lemma 3 : In every extreme point of the polyhedron defined by the

constraints (11) to (17),

i) if Ut > 0, then St = Dj for some j such that

t ^ j ^ T and

ii) if Vt > 0, then St = 0 or St = D3 for some j such that

t £ j £ T.

Proof : i) Let U*t, V*, Y[, S{, q\, t = 1,2, . . ., T be an extreme point.

Suppose the Lemma is false. Then there exists a k such that u£ > 0

and s£ $ Dj for any j, where k £ j ^ T. There are two cases to

consider.

Case 1 : u;'= Vj = 0 , t = k+1, k+2,...,T.

Now Sj = S*k for t = k+l,k+2, . . .,T. Consider any period t, where

k+1 ^ t ^ T. If Y| = S{, then Y*t < Dt and Yc is not at its upper

bound. If Yj = Dt , it follows that g£ > 0. Thus the variables

R, Uk# St, t = k,k+l,...,T and either Yt or gt/ t = k,k+l,...fT

(depending upon whether Y*t < Dt or Y* = Dt) , are strictly positive

and less than their corresponding upper bounds, if any. The arcs
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representing these variables form a cycle in the network

corresponding to the flow circulation form of (P7). Consequently

these variables cannot be strictly positive in any extreme point

of the polyhedron defined by the constraints (11) to (17).

Case 2 : U* or V* > 0 for some t such that k+1 < t < T.

If t * k+1, let p be the smallest index such that U* or V* > 0 and

U* = V*t = 0 for k< t £ p-1. If t = k+1, let p = k+1. Suppose V* > 0.

Now the variables R, Uk, Vp/ St, t = k,k+1,...,p-l and either Yt or

gt, t = k, k+1, . . . ,p-l (depending upon whether Yt < Dt or Yt = Dt),

are strictly positive and less than their corresponding upper

bounds, if any. If U* > 0# the variables Uk, Up, St,

t = k, k+1, . . . ,p-l and either Yt or gt, t = k,k+1,...,p-l (depending

upon whether Yt < Dt or Yt = Dt) are strictly positive and less than

their corresponding upper bounds, if any. In either case the

corresponding arcs form a cycle in the network representing the

flow circulation form of (P7) . Consequently these variables cannot

be strictly positive in any extreme point of the polyhedron

defined by the constraints (11) to (17).

ii) The proof for this part is similar to the proof of part (i) and

the details are omitted.

Remark 10 : If the objective function is a concave function, then

there exists an extreme point optimal solution , see Hadley [2].

However, a local optimal solution is not a global optimal solution
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and an enumeration of the extreme points is required. Now Lemma 3

can be used to derive an efficient dynamic programming algorithm.

The stages would correspond to the time periods and the states

would represent the warehouse capacity at the beginning of each

period. By Lemma 3, the number of states at each stage would be T+2

corresponding to a warehouse capacity of 0, So and Dt/

t = 1,2,...,T. The concave cost version of the problem is a

generalization of the problem considered by Manne and Veinott [4].

In [4], the demands are non-decreasing over time and reduction of

warehouse capacity is not permitted.

6. CONCLUSION

In this paper, a simple method of obtaining the optimal private

warehouse size for the static problem is given. Four extensions of

the static problem and their solutions are presented. The dynamic

warehouse sizing problem is shown to be a network flow problem

which could be solved easily using network flow algorithms. The

concave cost version of the dynamic warehouse sizing problem can be

solved efficiently using dynamic programming.
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