
 

 

 

 

 

 

WORKING PAPER NO: 356 
 

On Generalized Geometric Distributions: Application to Modeling Scores in Cricket 

and 

Improved Estimation of Batting Average in light of Notout Innings 
 

 

 

 

Shubhabrata Das  
Professor 

Indian Institute of Management Bangalore 

Bannerghatta Road, Bangalore – 5600 76 

Ph: 080-26993150 

shubho@iimb.ernet.in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year of Publication 2011 

 

 

 

 



 

 

 



On Generalized Geometric Distributions:

Application to Modeling Scores in Cricket

and

Improved Estimation of Batting Average

in light of Notout Innings

Shubhabrata Das

Indian Institute of Management Bangalore

Bannerghatta Road, Bangalore 560076 India

1



Abstract

In the game of cricket, batting average is the most common and basic measure of a bats-

man’s performance during a short duration, like a series or calendar year, as well over a longer

span like the career. Batting average is considered in isolation or in combination with other

measures like strike rate, at times depending on the form of the game. However, in either case,

treatment of runs scores from notout innings throws particular challenge in adopting batting

average as a measure of true performance. The conventional way of computing batting aver-

age enjoys favour as well as criticism from intuitive standpoint — but it can be justified as the

maximum likelihood estimate if the scores come from an Exponential or Geometric distribu-

tion. Either of these distributions is quite unreasonable in modeling cricket scores of a batsman

because of obviously non-constant hazard or propensity to get out after scoring different runs.

Towards this, we discuss the role of the Kaplan Meir estimator treating the scores from the

notout innings as right censored data. We show that while it provides a vast conceptual im-

provement over the traditional average, there are some associated some problems as well. The

first of these is because of its nonparametric nature, specially in the context of reflecting true

average performance in a short duration like a tournament or a series — the other because of

its inability to produce a finite-valued estimate when the largest score is from a notout innings.

To address these concerns, we propose a generalized class of Geometric distributions (GGD)

as model for the runs scored by individual batsmen. The generalization comes in the form of

hazard of getting out changing from one score to another. We consider the change points as the

known or specified parameters and derive the general expressions for the restricted maximum

likelihood estimators of the hazard rates under the generalized structure considered. Given the

domain context, we propose and test ten different variations of the GGD model and carry out

the test across the nested models using the asymptotic distribution of the likelihood ratio statis-

tic to determine the best possible model. This family of GGD subsumes the traditional average

as well as the Kaplan-Meir based estimate, as the 1 parameter GGD is the simple Geomet-

ric distribution, while the infinite order GGD corresponds to the non-parametric Kaplan-Meir

based survival function. Finally to estimate the true batting average, we propose two meth-

ods: first being the simple mean of the fitted GGD and in the second case the notout scores

are replaced by conditional mean of the fitted GGD, before averaging out. We show that while

the two methods coincide for the two extreme GGD (simple Geometric and nonparametric)

it is not so in general. We also discuss how different approaches for estimating average over

a short or long time horizon. Finally we compute batting averages by the different methods

for all top players, in both forms of the game and study the rank correlation. We also present

results from numerical computation is carried out using scores of all opening batsmen as well

as No 11 batsmen in one day cricket matches, to illustrate model selection procedures. This
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also establishes that any model in the family need not be appropriate for all situation. We also

focus on Batting average of two players. In particular, we show that quite possibly Bradman’s

true average was greater than 100, while Bevan have been distinctly beneficiary of prevalent

way of computing average as his 1-day average seems to be an overestimate by fair degree.

Keywords: Average, Censored, Hazard, Kaplan Meir estimator, (restricted) maximum likelihood.

1 Introduction

The game of cricket is essentially about scoring runs and taking tickets. The first of these is primar-

ily the job of the batsmen1, although often everybody in the team gets a chance to contribute. In

that sense, the number of runs scored in an attempt (called inning) is typically the most common

(if not the only) indicator of contribution made. (Although it is also important, especially in the

shorter versions of the game, how quickly these runs are scored. The latter is captured through

strike rate, i.e. runs scored per ball faced; however for the current purpose and focus, we discuss

only the number of runs scored and ignore the strike rate.) With that in mind, we note that batting

average, one of the most popular forms of statistics used in cricket to signify the contribution of

the batsman over a period of time or series. Simplicity is one of the reasons for the popularity

the batting average in terms of its widespread use in the context of the game analysis. It is a very

useful measure (e.g. as opposed to the total runs scored) for comparing performance between

players, series (of games) or even between two different generations as it adjusts for the opportu-

nities present for the batsman in a very simple and intuitive manner. In every team inning, all the

players in the team need not get a chance to bat and hence to score runs. Even when a batsman

gets chance to bat, he may score some runs (nonnegative integer) before getting ‘out’ or remain

‘notout’. For example, if a batsman scores 45 notout in an inning, it is not certain how much he

would have scored had the circumstances (game rule/ team’s decision, at times) allowed, but

obviously it would have to be a positive integer bigger than or equal to 45.

Traditionally in cricket analysis and journalism, batting average is believed to take care of ad-

justments in terms of opportunities present to the players while reporting his average contribution

(as a batsman ) in a simple manner. As is the case with most single summary statistic, it is unfair

to have the expectation of getting ideal communication in all circumstances. At the same time, it

1Although instead of batsman gender-neutral terminology batter is being used increasingly recently, here we have
continued with conventional terminology, ‘batsman’, in recognition with the history of the game.
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Table 1: Examples of Traditional Batting Average exceeding even the Maximum score
Player A Kumble DJ Nash H Tillakaratne

Series Year 2004-05 1998-99 2001-02
opponent Pakistan India West Indies

Test1 -inning1 1* 89* 105*
Test1 -inning2 — 4* 87
Test2 -inning1 21* 18* 7*
Test2 -inning2 14* 63 204*
Test3 -inning1 22
Test3 -inning2 37*

Traditional batting average 95 174 403

is important to diagnose if it suffers from a systemic drawback and to adjust the statistic rectifying

the problem, if there is one.

It is our assertion that the batting average systematically falls short of reflecting the true av-

erage performance of a batsman , certainly for a short duration (like a series) and possibly even

over a longer span like the career of the player. To explain this, let us formally state the formula

for computing the batting average, as is done in practice:

M =
Total no.of runs scored

No.of times batsman got out
(1)

Note that the denominator is not the number of innings the batsman gets to bat (which was the

practice in early years of cricket statistics). The use of M seems more generous to the batsman ;

what is not clear whether this generosity gets in the way of its intended purpose. Consider for

example, scores of a batsman in a particular series:

45 ∗ 20 ∗ 15 ∗ 60 30 ∗ 50 ∗ 70 35 ∗ 55 ∗ 40

where * denotes scores in notout innings. The average score of the batsman [M as in (1)] in the

series would be 420/3=140! Can we expect the batsman to score 140 in his next inning? Surely

not. Enclosed below are 3 real examples of batting averages being unrepresentative of the true

performance different 2 or 3 test match series. In all the examples, the traditional average far

exceeds even the maximum score and hence falls sort of being a good estimator of the true mean

capability of the player.

A key motivation of this research is to expose the limitation of traditional batting average when

the batsman is not out on multiple occasions and suggest suitable remedial action.

Noting that the scores from the notout innings are nothing but right-censored data, there is a
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standard approach to solving this problem through Kaplan-Meier (K-M) estimator. We present the

use of K-M estimator intuitively as well as form the angle of nonparametric maximum likelihood

estimation in Section 2 and present K-M average for top test batsmen. K-M approach has certain

limitation which we highlight here. Our subsequent approach tries to eradicate these problems

build on experience on trying K-M approach. Towards this, we adopt a parametric maximum

likelihood approach for censored data and build a class of parametric distributions as model for

distribution of runs scored. The discussion of this model, which we refer to as the class of Gen-

eralized Geometric distributions (GGD), is done in Section 3. Here we also consider different

subclasses under this family, as appropriate under the different contexts or players and discuss

method of picking appropriate one of them. Estimation of parameters by (restricted) maximum

likelihood methods in this family is also discussed in Section 3. We explicitly propose two differ-

ent approaches for adaptations of the model depending on the context in Section 4. In this section,

we present detailed numerical computations reflecting up to date averaged by the different meth-

ods for the best batsmen in both test match cricket as well as 1 day games, We also focus on the

controversial and highly debated case of batting average of Bradman in test cricket and Bevan in

1-day cricket. Our detailed model selection illustrations for 1day openers vis-a-vis No. 11 batsmen

show requirement for considering different GGD models for different players, position or context.

We conclude with few relevant comments and summary in Section 6.

2 Estimating True Batting Average: The Parametric and Nonparametric MLE

2.1 Notation

Let us introduce the notation for data at this stage now. Let X1, . . . , Xn be the scores from the n

innings when the batsman is out and Y1, . . . , Ym be the scores from them notout innings. Suppose

the highest score possible is K. For 0 ≤ i ≤ K, let fi denote the the number of times the batsman

scored i and got out at the score i; also let f∗i be the number of times, the batsman scored i and

remained notout at the conclusion of the innings. Note that some of the frequencies could be 0 as

well. Thus, we have:

K = max( max
1≤i≤n

Xi, max
1≤j≤m

Yj),

fi =

n∑
j=1

IIXj=i, f∗i =

m∑
j=1

IIYj=i,
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where II is the indicator function. Let F and F∗ denote the cumulative frequencies corresponding

to f and f∗, i.e.

Fi =

i∑
j=0

fj and F∗i =

i∑
j=0

f∗j .

Also,Mi denote the total no of scores (from out or notout innings) bigger than or equal to i, i.e.

Mi =

K∑
j=i

(fj + f
∗
j ) = (n− Fi−1) + (m− F∗i−1). (2)

2.2 The Kaplan-Meir Estimator

Kaplan and Meir [3] proposed a nonparametric estimator ŜKM(t) for the survival function S(t) =

P(X > t) when some of the observations are (right) censored. Application of that with cricket score

data where we have scores (observations) both complete (from ‘out’ innings) as well as incomplete

(from ‘notout’ innings), would give:

ŜKM(i) =

i∏
j=0

(1−
fj

Mj
), j = 0, 1, 2 . . . , and ŜKM(t) = ŜKM([t]), ∀t, (3)

where [t] denotes the largest integer less than or equal to t.

There are many desirable properties of the Kaplan Meir estimator, like the self-consistency

property (see, [2]). Most notably, specially in our context, it is (nonparametric) maximum likeli-

hood estimator of the survival function. We recap these results in the next subsection.

It is also very intuitively appealing to understand the Kaplan Meir approach through ‘redis-

tribute to the right’ principle, which goes as follows:

1. Put weight 1
m+n to all observations including the censored ones.

2. Now, starting from the smallest, redistribute the latest weight of the censored data, one at a

time, to all observations (complete or censored) bigger than it.

3. The K-M estimator of the survival function is nothing but the survival function of the even-

tual (discrete) distribution with masses only at the complete observations, once the weights

of all censored data have been redistributed.

Note the K-M estimator is designed for estimating the survival function. To estimate the es-

timate the population mean, the natural approach would be to take the mean of distribution as-

sociated the K-M survival function. Mean of any random variable X taking nonnegative integral
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values,
∑∞
n=1 n × IP(X = n) can be reorganized as

∑∞
i=0 IP(X > i). Since the batting score takes

only nonnegative integer values, its mean as given by the Kaplan Meir approach would be:

MKM =

K∑
i=0

ŜKM(i) =

K∑
i=0

i∏
j=0

(1−
fj

Mj
). (4)

An equivalent expression for the above is given by ([1]), but is not of much help computationally.

Many software packages including SAS report this mean routinely.

In Table 2 we present the computations of K-M average (MKM) vs. traditional average (M) for

some well known batsmen for both 1-day and tests.

Table 2: Batting averages of Top Test Batsmen: Traditional vs. Kaplan-Meir
# of # of highest traditional Kaplan Meir estimate

Batsman Innings notout score average average Percentiles
75th 50th 25th

DG Bradman 80 10 334 99.94 98.98 169 66 17
RG Pollock 41 4 274 60.97 62.14 90 42 12
GA Headley 40 4 270* 60.83 60.89 105 29 11
H Sutcliffe 84 9 194 60.73 59.50 94 51 22
E Paynter 31 5 243 59.23 58.56 77 40 9
KF Barrington 131 15 256 58.67 57.75 83 47 16
ED Weekes 81 5 207 58.61 58.56 90 39 13
WR Hammond 140 16 336* 58.45 61.07 65 32 16
IJL Trott 38 4 226 57.79 58.23 69 33.5 12
GS Sobers 160 21 365* 57.78 61.03 72 39 14
JB Hobbs 102 7 211 56.94 56.53 76 45 20
KC Sangakkara 173 12 287 56.93 57.43 71 35 13
JH Kallis 250 39 201* 56.89 55.61 84 38 12
CL Walcott 74 7 220 56.68 56.67 98 39 14
L Hutton 138 15 364 56.67 57.39 79 38 13
SR Tendulkar 303 32 248* 56.02 55.91 83 36 11
GS Chappell 151 19 247* 53.86 54.01 70 36 12
AD Nourse 62 7 231 53.81 54.04 73 36 20
R Dravid 278 32 270 53.22 53.68 80 36 12
BC Lara 232 6 400* 52.88 53.04 74 35 8
TT Samaraweera 108 19 231 52.61 53.22 77 34 9
Javed Miandad 189 21 280* 52.57 53.87 66 32 13
RT Ponting 267 28 257 52.53 52.86 75 34 10
M Yousuf 156 12 223 52.29 51.16 77 32 11
V Sehwag 159 6 319 52.15 52.65 66 33 10
MEK Hussey 112 12 195 51.73 51.16 82 36 10
J Ryder 32 5 201* 51.62 52.09 79 33 6
A Flower 112 19 232* 51.54 53.28 67 31 10
DPMD Jayawardene 207 13 374 51.3 51.90 67 33 10
Y Khan 125 9 313 51.2 52.19 71 35 7
SM Gavaskar 214 16 236* 51.12 51.05 71 33 8
SR Waugh 260 46 200 51.06 51.20 77 28 10
ML Hayden 184 14 380 50.73 50.68 77 34 13
AR Border 265 44 205 50.56 50.15 75 34 11
KP Pietersen 133 7 227 50.48 50.51 72 34 12
IVA Richards 182 12 291 50.23 50.60 70 34 9
DCS Compton 131 15 278 50.06 50.48 72 30 13

Remarks and Observations from Table 2:
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• The list includes batsmen having test average of 50 or higher – 4 players with less than 20

matches are excluded from this list.

• For players still playing test matches, matches up to November 26, 2011 have been consid-

ered.

• Since these are career averages, the difference between tradition and K-M averages are rea-

sonably small. The difference also does not follow any pattern in terms of the percentage of

notout innings, as one might like to believe as a quick guess.

• Indeed for some players, the K-M average is higher than the traditional average. This is best

understood by careful introspection of the redistribute to the right principle of K-M method.

• This K-M approach in the context of batting average is possibly first documented in statisti-

cal literature by Kimber et al. [4].

• Routine implementation of Kaplan Meir using softwares like SAS would yield slightly dif-

ferent values (e.g. Bradman’s K-M average is given as 99.06 using SAS). This is because of

discreteness of the data in the current context. A continuous a data-point right-censored at

50.23, means the complete observation, had it been observed, would be something strictly

bigger than 50.23. However a notout score of 50 should be interpreted as the complete ob-

servation being 50 or more in that case. This adjustment has been taking into account in (4)

– but not in many commercial software primarily meant for continuous data.

• Although we focus only on the averages in the present work, we are in agreement with [4]

in observing that to compare performance it is advisable to compare the entire distribution

or certain major percentiles as opposed to looking at only the mean. With that in mind, the

estimates of the quartiles as obtained by the K-M method (using SAS) are also reported in

Table 2.

• Among other facts, this table shows how Bradman’s performance was superior to the other

greats. Not only in terms of average, which is well known in the cricketing world, but also

in the form of (K-M) 75th or 50th percentile, he is ahead by more than 60% of his nearest

competitor. Such is the dominance of Bradman, that many consider him to be the greatest

sportsman considering all sports. It is also because of that his so-called failure to reach the

milestone of average of 100 is so talked about. As we show later, perhaps unfairly — as
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his true average possibly exceeded 100, even though it is not illustrated by the traditional

average or even the K-M estimate.

2.3 Batting Average and Maximum likelihood Estimation: Parametric and Nonparamet-

ric approach

First we show that the traditional batting average can be justified from the angle that it is the MLE

if the batting scores come from an Exponential Distribution or Geometric distribution. Next we il-

lustrate that the Kaplan-Meir estimator comes into the picture if one consider only non-parametric

MLE. All the three results are well known results in statistics. We replicate them here for the sake

of completeness and showing their adaptability to the cricket score data. This also introduces the

necessary background and opens the door for introduction of the Generalized Geometric distri-

bution, as discussed in the next section.

Lemma 1 If X1, . . . , Xn and Y1, . . . , Ym are respectively complete and right-censored i.i.d. observations

drawn from an Exponential distribution, the maximum likelihood estimate of the mean of the population

distribution is given by:

µ̂ =

n∑
i=1

Xi +

m∑
j=1

Yj

n
, (5)

which is nothing but the traditional batting average (1).

Proof. Using the notation for data, as given in the beginning of this section, the likelihood becomes

L(X1, . . . , Xn; Y1, . . . , Ym) =

n∏
i=1

φ(Xi)

m∏
i=1

S(Yj−), (6)

as a function of the density function φ(·) and survival functionS(·), with S(y−) = P(Y ≥ y) =

limx→y+ S(x). If the batting scores are from an Exponential distribution with parameter λ, φ(x) =

λe−λx, we have S(y) = S(y−) = e−λy. In this case, (6) reduces to

L = λn exp{−

n∑
i=1

Xi −

m∑
j=1

Yj}
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. To maximize L, as usual, we take logarithm and derivative w.r.t. λ, leading to to the MLE

λ̂ =
n

n∑
i=1

Xi +

m∑
j=1

Yj

.

Using the transferability property of the MLE, the MLE of the mean of the Exponential distribution
1
λ is given by (5), or the traditional batting average formula, as given in (1).

The problem with using (1) is the limitation of Exponential distribution as a model of scores, not

just because it is continuous while score distribution is discrete, but also because of poor fit shown

empirically in many studies ([1]), [6], among others). Next we show that the conclusion of the

previous lemma continue to hold, if the scores are from a Geometric distribution.

Lemma 2 Suppose the complete or right-censored observations come from a Geometric distribution with

parameter p:

φ(x) = α(1− α)x, x = 0, 1, 2, . . . . (7)

Then the maximum likelihood estimate of the mean of the population distribution, namely 1
α − 1 is (again)

given by the traditional batting average (5).

Proof. The likelihood function with the complete observations X1, . . . , Xn and right censored ob-

servations Y1, . . . , Ym now becomes

L(X1, . . . , Xn; Y1, . . . , Ym) = αn(1− α)
∑n

i=1 Xi+
∑m

j=1 Yj , (8)

δlnL

δα
|α=α̂ = 0⇒ n

α̂
=

n∑
i=1

Xi +

m∑
j=1

Yj

1− α̂

or α̂ =
n

n+

n∑
i=1

Xi +

m∑
j=1

Yj

,

and hence the MLE of the mean is given by

1

α̂
− 1 =

n∑
i=1

Xi +

m∑
j=1

Yj

n
.
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The following result shows that Kaplan-Meir mean is the nonparametric MLE.

Lemma 3 Without considering a parametric form for the population distribution, the nonparametric MLE

turns out to be (4), or the mean of the distribution corresponding to the Kaplan-Meir survival function.

Proof. If we do not consider any parametric model for scores, and consider only the empirical

distribution, (6) becomes,
K∏
i=0

[{
S(i−) − S(i)

}fi{S(i−)
}f∗i ] (9)

by expressing it only in terms of the survival function S(·). We need to maximize this over all

possible choices of survival function S(·) which needs to non-decreasing in nature. We observe

that, the maximization would occur if S(i−) = S(i−1), ∀i and S(0−) = 1. Now using the notation,

S(i) = si, (9) becomes:

L = (1− s0)
f0 ×

K∏
i=1

{
(si−1 − si)

fis
f∗i
i−1

}
.

Using α0 = s0, αi = si
si−1

, i ≥ 1,we get

si =

i∏
i=0

αi, and for i ≥ 1, si−1 − si = (1− αi)

i−1∏
i=0

αi.

Now rearranging and collating terms leads to:

L =

i∏
i=0

(1− αi)
fiα

Mi+1

i (10)

withMi being as given in (2). Now standard maximization leads:

αi =
fi

fi +Mi+1
, (11)

implying that the MLE is given by (4).

2.4 Limitation of Kaplan Meir approach in estimating true batting average

Geometric (and Exponential) distribution provide a poor fit to the batting scores — a typical bats-

man’s propensity to get out is not constant at the different possible scores. Hence the traditional
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average (1) is unsatisfactory estimate of the true average, in light of notout innings.

In spite of vast conceptual improvement he K-M estimator provides in estimating true mean in

light of the censored data, i.e. scores from notout innings, there are couple associated concerns or

difficulties as well in applying to batting score context. First, the philosophy of K-M estimator is

that it is entirely non-parametric and (empirical) data driven. Note that the distribution suggested

by the K-M survival function puts probability mass only at the scores when the player has got out

in the past (or in the relevant time domain). Thus, if a player has never got out at a score of 10, as

per the K-M estimator, the chance of him getting out be taken as 0 in the K-M estimate. This would

not find favour with many practitioners; the problem would be compounded specially when one

might be looking at the performance in a calender year or series (with small data points). The issue

is addressed in the approaches proposed in the next section by considering a general probabilistic

model which would allocate certain positive probability to all plausible scores (values) in the

range.

The second aspect of difficulty with adopting K-M approach for batting score arises in connec-

tion with finiteness of the computed value. Note that the summation in (4) should technically go

up to∞; but we ignore the terms for score i > k . This is problematic as, if

max
1≤i≤n

Xi ≤ max
1≤j≤m

Yj

i.e. (one of) the highest score is from a notout innings, fK 6= Nk, implying ŜKM(K) 6= 0, and

consequently

ŜKM(t) > 0 ∀t,

i.e. there would be a positive probability mass at∞ as per K-M distribution. This would lead to

an infinite mean which is meaningless in the current context. A simple crude way of practically

resolving the issue, if adopting the K-M approach would be to interchange the highest score from

a notout innings with the highest score from the out innings, in case the latter is not larger than

the former. (An alternative would be to treat all the notout innings with the highest scores from

out innings; but we stick to the above choice as this adjustment does not alter the computation of

the traditional average.) However, this naturally suffers from arbitrariness.

Examples given in Table 1 in Section 1 highlight these concerns. First, in each of the 3 cases, the

highest score is from a notout innings. Consequently, the mean corresponding to the Kaplan-Meir

survival function is infinite. Even if we swap the highest notout score by the highest out score,
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since there is only 1 innings with out score, the Kaplan Meir average would reduce to this single

value, which happens to be the maximum score. This is perhaps unsatisfactory. In the last section

of this paper, we outline a procedure where possibly a more reasonable estimate can be arrived

while considering average in a series or tournament like this.

3 Generalized Geometric Distribution (GGD)

A random variable X is said to be having a Geometric distribution if it has a density function given

by

P(X = i) = α(1− α)i, i = 0, 1, 2, . . . . (12)

Among other aspects, it is characterized by constant hazard; i.e.

P(X = i|X ≥ i] = α,

not depending on the value i.

In the context of a batsmen’s score X, it is unrealistic since the batsmen’s propensity to get out

at a certain score given that he had survived up to that point is typically not the same for all scores.

Usually, the batsmen is more vulnerable at the beginning of the innings and also after reaching the

hundred, if he does so. Different batsmen show different pattern and capabilities. Some of them

tend to get out in the twenties; a few of them appears to be more vulnerable in the nineties.

Motivated by this, under complete generality, we propose a family of distributions via the

sequence of hazard at the score i = 0, 1, 2, . . . by,

αi = P[X = i|X ≥ i].

Thus, the distribution which call a Generalized (family) of Geometric Distribution or (GGD), has

a density:

φ(0) = α0, φ(i) = P(X = i) = αi ×
i−1∏
j=0

(1− αj), i = 1, 2, . . . . (13)

Note that, equivalently the survival function S(·) is given by

S(i) =

i∏
j=0

(1− αj), i = 0, 1, . . . ; (14)
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3.1 Models in the GGD Family

In practice, one may not want all the hazard rates to be different. Consequently we consider the

following different variations/ constraints of the GGD distribution to model a batsman’s score:

1. GGD1: Traditional geometric distribution, as given in (12), – all hazard ratesαi’s being equal;

2. GGD2: α0 is different, all other hazard rates equal;

3. GGD3: α0 and α1 are different (from each other as well as other hazards rates), all other

hazard rates equal;

4. GGD4: α0 is different, α1 = α2 = . . . = α9, α10 = α11 = . . .;

5. GGD5: α0 is different, α1 = α2 = . . . = α9, α10 = α11 = . . . = α99, α100 = α101 = . . .;

6. GGD6: α0 is different, α1 = α2 = . . . = α9, α10 = α11 = . . . = α99, α100 = α101 =

. . . α105, α106 = α107 = . . .;

7. GGD7: α0 and α1 are different, α2 = α3 = . . . = α9, α10 = α11 = . . .;

8. GGD8: α0 and α1 are different, α2 = α3 = . . . = α9, α10 = α11 = . . . = α99, α100 = α101 =

. . .;

9. GGD9: α0 and α1 are different, α2 = α3 = . . . = α9, α10 = α11 = . . . = α99, α100 = α101 =

. . . α105, α106 = α107 = . . . ;

10. GGD∞: all hazard rates αi are distinct.

Note that in the above when we mention that two or more hazard rates are distinct, it implied

that they are possibly distinct and hence as a special case, some of them could be equal. Thus

we have a nesting among the above probability models, in the sense, e.g. GGD1 is a special case

of all other models and every model in the above class is a special case of GGD∞ We show the

complete nesting across the 10 GGD model through Figure 1; model numbers are indicated within

respective boxes; if there is a (chain of) directional arrow(s) from Model i to Model j, it should be

interpreted as Model i is nested into Model j, or equivalently Model i is a subset model of Model

j. We discuss choosing between two nested models in the testing of hypothesis framework later

on.
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3.2 Parameter Estimation in GGD Family

Let us now dwell on estimation of (hazard) parameters. We adopt maximum likelihood (ML) or

restricted maximum likelihood (RML) approach, with the restriction coming in the form of models

as mentioned above. To start with, let us consider the most general GGD distribution, viz. GGD∞.

Adopting notations for data as given in the beginning of Section 2, the likelihood function is

given by:

L =
[ n∏
i=1

φ(Xi)
]
×
[ m∏
i=1

S(Yi−)
]
. (15)

Since we are dealing with discrete data, it is very important to note and the last term in (15),

as for any notout score y, its contribution to the likelihood expression should be P(X ≥ y) =

limx→y− P(X > x) = S(y−), which is also equal to S(y−1) for y ≥ 1 and equal to 1 for y = 0. Now

using (13) and (14) and rearranging terms in (15), we get:

L =
[ K∏
i=0

α
fi
i

i−1∏
j=0

(1− αj)
fj
]
×
[ K∏
i=0

i−1∏
j=0

(1− αj)
f∗j
]

=

K∏
i=0

α
fi
i (1− αi)

(n−Fi)+(m−F∗i )

Taking logarithm, we get

lnL =

K∑
i=0

fi lnαi + [(n− Fi) + (m− F∗i )] ln(1− αi);

Now differentiating w.r.t. αi’s and equating the expressions to zero, we get the MLE’s :

( fi
αi

−
(n− Fi) + (m− F∗i )

1− αi

)
αi=α̂i

= 0

⇒ α̂i =
fi

fi + (n− Fi) + (m− F∗i )
(16)

To understand and interpret (16), let us first consider the simplified scenario, when there are

no notout innings, i.e. f∗i = ∀i,⇔ F∗i = ∀i orm = 0. In that case, (16) reduces to

α̂i =
fi

fi + n− Fi
. (17)

Note that the numerator of (17) is the number of times the batsman gets out at score i. On the
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other hand, the denominator is the number of occasions the batsman has risk/exposure to get out

at the score i, or equivalently this is the number of scores of i or higher. Thus, the MLE of the

hazard rates are simply the reflections of relative frequency definition of probability, by virtue of

complete lack of inter-connectivity across the hazard rates (memory-less property).

This same intuitive reasoning can be extended for data with notout innings, i.e. m > 0. Note

now, in (16) vis-a-vis (17) the numerator unsurprisingly remains the same, while in the denomi-

nator we also count the no. of notout innings with score in excess of i, in addition. Intuitively, the

innings with not out score equal to i are not counted in the numerator as well as the denominator,

since in those innings the batsman could have fallen on the score i had the innings been allowed

to continue.

We may also simplify (16) as

α̂i =
fi

fi +Ni
, (18)

by introducing the additional notation [refer to (2)]

Ni = Mi+1 = (n− Fi) + (m− F∗i )

representing the total no. of innings (out or notout, counting both) with scores in excess of i.

To obtain parameter estimates in the other GGD models we propose restricted maximum like-

lihood or RML. This is one of the (relatively rare) setup which entails closed form expressions

for RML. While we will not dwell on the completely generalized expressions, it should be clear,

following the path taken in derivation (16), if αi1 = αi2 = . . . = αip under the model, the ML of

their common value would be given by:

p∑
j=1

fij

p∑
j=1

(fij +Nij)

. (19)

Hence, in particular, the common hazard parameter in ℵ1 would be given by

α̂ =

K∑
i=0

fi

K∑
i=0

(
fi + (n− Fi) + (m− F∗i )

) =
n

n+

K∑
i=0

Ni

,
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Similarly, the RML for each of the remaining models can be obtained as given below:

GGD2 : α̂0 =
f0

f0 +N0
, and for i ≥ 1, α̂i =

K∑
i=1

fi

K∑
i=1

(fi +Ni)

GGD3 : α̂0 =
f0

f0 +N0
, α̂1 =

f1

f1 +N1
, and for i > 1, α̂i =

K∑
i=2

fi

K∑
i=2

(fi +Ni)

GGD4 : α̂0 =
f0

f0 +N0
; α̂i =

9∑
i=1

fi

9∑
i=1

(fi +Ni)

, i = 1, 2, . . . , 9;

and for i > 9, α̂i =

K∑
i=10

fi

K∑
i=10

(fi +Ni)

GGD5 : α̂0 =
f0

f0 +N0
; α̂i =

9∑
i=1

fi

9∑
i=1

(fi +Ni)

, i = 1, 2, . . . , 9;

α̂i =

99∑
i=10

fi

99∑
i=10

(fi +Ni)

, i = 10, . . . , 99; &for i > 99, α̂i =

K∑
i=100

fi

K∑
i=100

(fi +Ni)
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GGD6 : α̂0 =
f0

f0 +N0
; α̂i =

9∑
i=1

fi

9∑
i=1

(fi +Ni)

, i = 1, 2, . . . , 9;

α̂i =

99∑
i=10

fi

99∑
i=10

(fi +Ni)

, i = 10, . . . , 99; α̂i =

105∑
i=100

fi

105∑
i=100

(fi +Ni)

, i = 100, . . . , 105;

& for i > 105, α̂i =

K∑
i=106

fi

K∑
i=106

(fi +Ni)

GGD7 : α̂0 =
f0

f0 +N0
; α̂1 =

f1

f1 +N1
, α̂i =

9∑
i=2

fi

9∑
i=2

(fi +Ni)

, i = 2, . . . , 9;

and for i > 9, α̂i =

K∑
i=10

fi

K∑
i=10

(fi +Ni)

GGD8 : α̂0 =
f0

f0 +N0
; α̂1 =

f1

f1 +N1
, α̂i =

9∑
i=2

fi

9∑
i=2

(fi +Ni)

, i = 2, . . . , 9;

α̂i =

99∑
i=10

fi

99∑
i=10

(fi +Ni)

, i = 10, . . . , 99; &for i > 99, α̂i =

K∑
i=100

fi

K∑
i=100

(fi +Ni)
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GGD9 : α̂0 =
f0

f0 +N0
; α̂1 =

f1

f1 +N1
, α̂i =

9∑
i=2

fi

9∑
i=2

(fi +Ni)

, i = 2, . . . , 9;

α̂i =

99∑
i=10

fi

99∑
i=10

(fi +Ni)

, i = 10, . . . , 99; α̂i =

105∑
i=100

fi

105∑
i=100

(fi +Ni)

, i = 100, . . . , 105;

& for i > 105, α̂i =

K∑
i=106

fi

K∑
i=106

(fi +Ni)

Recall that, in the given context, estimating mean is of paramount important and the GGD

does not have simplified expression for the population; the mean would be simply estimated by

MGGD =

K∑
i=1

i α̂i ×
( i−1∏
j=0

(1− α̂j)
)

(20)

3.3 Using Likelihood ratio Test to Select between Models

We use the likelihood ratio test to choose between any pair of nested models. Recall that the

asymptotic null distribution of the test statistic

2× [ln(Lf) − ln(Ls)]

is Chi-square with degrees of freedom being equal to the difference in the number of parameters

between the full and the subset model; Lf and Ls are respectively likelihood under full and subset

models.

4 Proposed method of Estimating True Average Score

Having decided on the best GGD model as the fit for the runs scores, we consider and propose

two alternative procedures depending on the context. (There are also some additional variations

or considerations while implementing in a given context, which we discuss in more details within

the description of the methods).
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1. Method 1: Mean of GGD (abbreviated as MGGD)

2. Method 2: Replacement of Notout score Before Averaging method (abbreviated as RNBA)

Mean of GGD (MGGD): Having chosen and fitted one (best) GGD model, the simplest and ar-

guably the most natural approach would be to used the mean of GGD model as the estimate of the

true average score. Indeed when the objective is to estimate the average over a prolonged period,

like the career of a batsman, we recommend this MGGD or mean of the GGD apparoach. There

are two broad steps in model selection and fitting, viz.,

• Estimation of hazard parameters in specific GGD models: estimator is to be obtained using

all the available scores, from completed as well as notout innings, using (restricted) maxi-

mum likelihood procedure outlined in Section 3.2.

• Selection of best fit model from the group GGD models: this would be done using likelihood

ratio statistic, also outlined in Section 3.3.

While there are some scopes for the analyzer’s discretion in adopting the specific form, the

following is our recommendation.

• For long term like career average for a specific player, find the best fit GGD model as well as

all relevant hazard parameters on the basis of the entire data of that player.

• For a short time batting average, like over a test match series or a tournament, one may

choose the best GGD model using all the historical data corresponding to batting position

in the same form of the game (test or 1-day or 20-20). At times, using broader structure

like opening batsmen, middle order, tailender etc maybe used. Alternatively, especially if

the player has been playing for long enough, the best GGD model may be selected on the

basis of the specific players’s career-wide data. In either case, once the best GGD model is

identified, the hazard parameters are estimated only on the basis of the relevant scores of

the player during that series or tournament (time span).

Replacement of Notout score Before Averaging method (RNBA): In this method, every notout

score y∗ gets substituted by the projected (replacement score) score in that innings computed by

x∗(y∗) = E[X|X ≥ y∗],
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where the expectation is taken in terms of the fitted (chosen GGD) distribution of score variable X.

Subsequently, the final estimate is obtained by simply taking the average of scores from completed

(out) innings and the replacement scores corresponding to the notout innings.

Couple of variations within the RNBA scheme seems reasonable. When large data is available

and pertinent, for example while computing career average, it makes sense to estimate the hazard

parameters of based on entire career data. There may be some concern of ‘inbreeding’ and hence

one can also adopt ‘leave current observation out’ while fitting. However the issue is of much less

relevance in the given context.

While estimating average over relatively short period, e.g. in a series (when the data will be

scarce), one can select an appropriate GGD model using prior information. We recommend using

batting position as the key prior information, although alternatives are possible along the same

approach. So a specific member of GGD family with already pre-selected hazard parameters based

on prior information (batting position).

4.1 Numerical demonstration: GGD models in Estimating Batting Average score by the

Two Proposed Methods — Career Average for Top Batsmen in Test and 1 Day games

We now show the GGD averages by different model for all major test batsmen, the same set re-

ported in Table 2.

Comments from Tables 3 - 6

• In Tables 5 and 6, Avg avg refers to the average of all averages computed using both the

methods, mean of the fitted GGD, as well as the mean obtained by substituting the notout

scores by GGD modeling. Average of the first group of methods, excluding the two extremes

(traditional average and K-M) are denoted by the Mean MGGD, while the same from the

second method are denoted by Mean RNBA.

• GGD1 corresponding to the simple Geometric model and the average reduces to traditional

average as shown lemma 1, under both the method proposed.

• Similarly, GGD∞ corresponds to the K-M average under both methods.

• MGGDi refers to the MGGD estimate after fitting Model GGDi, while RNBAi refers to the

RNBA estimate from the same model.
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Table 3: Batting average of Top Test Batsmen: MGGD estimates (Method 1) — Estimating by
mean of fitted GGD Models

GGD1 GGD2 GGD3 GGD4 GGD5 GGD6 GGD7 GGD8 GGD9 GGD∞
DG Bradman 99.94 99.88 100.02 100.02 99.99 99.95 100.03 100.00 99.96 98.98
RG Pollock 60.96 61.02 61.08 61.64 61.40 61.44 61.61 61.38 61.42 62.14
GA Headley 60.83 61.07 61.14 61.29 61.29 61.41 61.30 61.30 61.43 60.89
H Sutcliffe 60.73 60.78 60.68 60.67 59.47 59.52 60.68 59.48 59.53 59.50
E Paynter 59.22 60.26 60.50 61.12 62.73 63.00 61.12 62.73 63.01 58.56
KF Barrington 58.67 58.83 59.06 59.10 58.09 58.05 59.12 58.11 58.07 57.75
ED Weekes 58.61 58.85 59.01 59.07 58.54 58.54 59.14 58.62 58.61 58.56
WR Hammond 58.45 58.55 58.64 58.63 59.76 59.74 58.64 59.78 59.75 61.07
IJL Trott 57.79 57.86 57.74 58.48 59.99 59.70 58.34 59.84 59.55 58.23
GS Sobers 57.78 58.34 58.45 58.27 59.14 59.16 58.26 59.13 59.15 61.03
JB Hobbs 56.94 57.04 57.10 56.80 56.50 56.48 56.76 56.47 56.44 56.53
KC Sangakkara 56.93 56.96 56.96 57.01 57.82 57.86 57.01 57.82 57.86 57.43
JH Kallis 56.89 57.18 57.18 57.51 56.94 57.09 57.51 56.94 57.08 55.61
CL Walcott 56.68 56.66 56.72 56.80 56.87 56.78 56.80 56.87 56.78 56.67
L Hutton 56.67 56.81 56.74 56.82 57.43 57.99 56.81 57.42 57.98 57.39
SR Tendulkar 56.02 56.22 56.34 56.67 56.91 56.79 56.68 56.93 56.81 55.91
GS Chappell 53.86 54.39 54.37 54.57 54.44 54.27 54.56 54.43 54.26 54.01
AD Nourse 53.82 54.04 54.03 54.23 53.85 53.84 54.22 53.84 53.82 54.04
R Dravid 53.51 53.59 53.65 53.98 54.09 54.00 53.99 54.10 54.01 53.68
BC Lara 52.89 52.97 53.00 53.05 53.24 53.24 53.08 53.27 53.26 53.04
V Sehwag 52.69 52.82 52.85 52.87 52.90 52.89 52.87 52.90 52.89 53.17
TT Samaraweera 52.62 53.44 53.89 54.08 53.99 53.97 54.14 54.05 54.04 53.22
J Miandad 52.57 52.66 52.72 52.85 54.41 54.81 52.85 54.41 54.82 53.87
RT Ponting 52.54 52.80 52.81 53.10 52.95 53.01 53.09 52.95 53.01 52.86
M Yousuf 52.29 52.54 52.55 52.64 52.58 52.55 52.64 52.58 52.55 52.32
MEK Hussey 51.73 52.22 52.38 52.40 51.72 51.59 52.42 51.74 51.61 51.16
J Ryder 51.63 51.74 51.86 53.47 54.52 54.03 53.43 54.47 53.99 52.09
A Flower 51.55 51.84 51.74 52.67 56.50 55.63 52.65 56.48 55.61 53.28
DPMD Jayawardhane 51.31 51.43 51.52 51.60 51.74 51.79 51.64 51.78 51.83 51.90
Y Khan 51.21 51.55 51.59 52.00 52.09 51.89 52.00 52.08 51.89 52.19
SM Gavaskar 51.12 51.28 51.37 51.54 51.32 51.27 51.58 51.36 51.31 51.05
S Waugh 51.06 51.87 52.19 52.36 53.06 54.01 52.40 53.10 54.05 51.20
M Hayden 50.73 50.98 50.93 50.88 50.94 50.95 50.88 50.94 50.94 50.68
A Border 50.56 50.80 50.89 51.59 51.43 51.27 51.59 51.43 51.27 50.15
K Pietersen 50.48 50.58 50.70 50.71 50.56 50.55 50.76 50.61 50.60 50.51
IVA Richards 50.23 50.37 50.43 50.56 50.70 50.66 50.59 50.72 50.69 50.60
DCS Compton 50.06 50.47 50.52 50.40 50.31 50.26 50.41 50.31 50.27 50.48

Similarly in Tables 7 and 8 we present the MGGD and RNBA estimates of average of top

batsmen in 1-day version of the game. The criterion of selection has been traditional average in

excess of 38; in addition, we have included three well-known big-hitters of the game, viz. AC

Gilchrist, V Sehwag and ST Jayasurya, whose average are slightly lower, but strike rate, which is

an important indicator of 1-day batting, is high. (RN ten Doeschate is excluded from this list as he

played mostly against associate countries.) As already noted and verified, the MGGD and RNBA

estimates coincide for GGD1 and GGD∞. Hence, in Table 8, instead of reporting these duplicate

entries, we have included the strike rate (defined as the average runs scored per 100 balls faced)

and an overall batting index, as arguably apt for single measure in 1-day format, computed by

multiplying the average score by the strike rate — in this context, we take the average of the GGD

averages, both methods combined. The final comparison of ranking is reported in Table 9 by the
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Table 4: Batting average of Top Test Batsmen: RNBA estimate (Method 2)–
Replacement of Notout score (via GGD Model fitting) Before Averaging method

GGD1 GGD2 GGD3 GGD4 GGD5 GGD6 GGD7 GGD8 GGD9 GGD∞
Bradman 99.94 100.76 101.01 101.04 100.73 100.60 101.04 100.73 100.60 98.98
RG Pollock 60.97 61.03 61.09 61.93 61.62 61.63 61.93 61.62 61.63 62.14
GA Headley 60.83 61.07 61.15 61.31 61.54 61.69 61.31 61.55 61.69 60.89
H Sutcliffe 60.73 60.79 60.68 60.68 59.59 59.64 60.68 59.59 59.65 59.50
E Paynter 59.23 60.27 60.51 61.05 62.04 63.01 61.05 62.04 63.01 58.56
KF Barrington 58.67 58.83 59.07 59.13 58.45 58.42 59.13 58.45 58.42 57.75
ED Weekes 58.62 58.86 59.03 59.17 58.69 58.69 59.17 58.69 58.69 58.56
WR Hammond 58.46 58.55 58.65 58.64 61.12 61.07 58.64 61.12 61.08 61.07
IJL Trott 57.79 57.86 57.74 58.62 61.26 60.82 58.62 61.26 60.82 58.23
GS Sobers 57.78 58.34 58.45 58.27 59.48 59.50 58.27 59.48 59.50 61.03
JB Hobbs 56.95 57.04 57.11 56.79 56.59 56.55 56.79 56.59 56.56 56.53
KC Sangakkara 56.94 56.96 56.96 57.02 58.26 58.31 57.02 58.26 58.31 57.43
JH Kallis 56.89 57.18 57.18 57.52 56.82 56.97 57.52 56.82 56.97 55.61
CL Walcott 56.69 56.66 56.72 56.79 56.11 56.01 56.79 56.11 56.01 56.67
L Hutton 59.85 60.11 60.08 60.72 64.79 63.45 60.72 64.78 63.45 55.52
SR Tendulkar 56.02 56.22 56.35 56.66 56.93 56.80 56.66 56.93 56.81 55.91
GS Chappell 53.86 54.39 54.37 54.59 54.39 54.21 54.59 54.38 54.20 54.01
AD Nourse 53.82 54.04 54.03 54.29 53.91 53.90 54.29 53.91 53.90 54.04
R Dravid 53.52 53.59 53.65 54.03 54.13 54.04 54.03 54.13 54.04 53.68
BC Lara 52.89 52.97 53.00 53.10 53.29 53.28 53.10 53.29 53.28 53.04
V Sehwag 52.69 52.83 52.85 52.87 53.12 53.10 52.87 53.12 53.10 53.17
TT Samaraweera 52.62 53.44 53.89 54.13 54.04 54.03 54.15 54.06 54.05 53.22
J Miandad 52.57 52.66 52.72 52.85 54.61 55.08 52.86 54.61 55.08 53.87
RT Ponting 52.54 52.80 52.81 53.08 52.90 52.96 53.08 52.90 52.96 52.86
M Yousuf 52.29 52.54 52.55 52.64 52.53 52.51 52.64 52.53 52.51 52.32
MEK Hussey 51.73 52.22 52.38 52.43 51.86 51.74 52.43 51.86 51.74 51.16
J Ryder 51.63 51.74 51.86 53.64 54.47 54.03 53.64 54.47 54.03 52.09
A Flower 51.55 51.84 51.74 52.60 56.38 55.48 52.60 56.38 55.48 53.28
DPMD Jayawardhane 51.31 51.44 51.52 51.67 51.90 51.94 51.67 51.90 51.94 51.90
Y Khan 51.21 51.55 51.59 52.00 52.08 51.88 52.00 52.08 51.88 52.19
SM Gavaskar 51.12 51.28 51.37 51.62 51.34 51.29 51.62 51.34 51.30 51.05
S Waugh 51.06 51.87 52.19 52.38 53.19 54.24 52.40 53.21 54.26 51.20
M Hayden 50.74 50.98 50.93 50.89 50.62 50.62 50.88 50.61 50.62 50.68
A Border 50.56 50.80 50.89 51.55 51.40 51.25 51.55 51.40 51.25 50.15
K Pietersen 50.48 50.58 50.70 50.77 50.58 50.64 50.77 50.58 50.64 50.51
IVA Richards 50.23 50.37 50.43 50.64 50.75 50.72 50.64 50.75 50.72 50.60
DCS Compton 50.06 50.47 50.52 50.40 50.25 50.20 50.40 50.25 50.21 50.48

different methods.

Comments from Tables 7- 9

• Notations are identical to the ones used in Tables 3–6.

• For several players, most notably MG Bevan and MEK Hussey, the traditional batting aver-

age appears to estimate their true average by substantive margin.

• It is interesting to note that traditional estimate appears to underestimate in few cases as

well. Going by the assumption that Avg avg is more reflective of the true average, that is the

case for as many as 8 players in considered list.

• We also performed the rank correlation between different methods of estimating the average
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Table 5: Rank order of test batsmen by different methods of computing averages
Rank

Player Trad. Avg K-M MGGD2 RNBA2 Mean MGGD Mean RNBA Avg avg
DG Bradman 1 1 1 1 1 1 1
RG Pollock 2 2 3 3 3 3 2
GA Headley 3 5 2 2 4 4 4
H Sutcliffe 4 6 4 4 5 5 5
E Paynter 5 8 5 5 2 2 3
KF Barrington 6 10 7 8 10 10 11
ED Weekes 7 7 6 7 8 8 10
WR Hammond 8 3 8 9 6 6 6
IJL Trott 9 9 10 11 7 7 8
GS Sobers 10 4 9 10 9 9 9
JB Hobbs 11 14 12 13 15 15 14
KC Sangakkara 12 11 13 14 11 11 12
JH Kallis 13 16 11 12 13 13 13
CL Walcott 14 13 15 15 14 14 15
L Hutton 15 12 14 6 12 12 7
SR Tendulkar 16 15 16 16 16 16 16
GS Chappell 17 18 17 17 17 17 17
AD Nourse 18 17 18 18 19 19 18
R Dravid 19 20 19 19 21 21 20
BC Lara 20 23 21 21 24 24 24
TT Samaraweera 21 22 20 20 20 20 21
J Miandad 22 19 23 23 22 22 22
RT Ponting 23 24 22 22 25 25 25
M Yousuf 24 26 24 24 27 27 27
V Sehwag 25 25 25 25 28 28 28
MEK Hussey 26 31 26 26 29 29 29
J Ryder 27 28 29 29 23 23 23
A Flower 28 21 28 28 18 18 19
DPMD Jayawardhane 29 29 31 31 31 31 30
Y Khan 30 27 30 30 30 30 26
SM Gavaskar 31 32 32 32 32 32 31
S Waugh 32 30 27 27 26 26 32
M Hayden 33 33 33 33 34 34 33
A Border 34 37 34 34 33 33 34
K Pietersen 35 35 35 35 35 35 35
IVA Richards 36 34 37 37 36 36 36
DCS Compton 37 36 36 36 37 37 37

Table 6: Rank Correlation between different Averages: test batsmen
Trad. Avg K-M MGGD2 RNBA2 Mean MGGD Mean RNBA Avg avg

Trad. Avg 1.00
K-M 0.97 1.00

MGGD2 0.99 0.97 1.00
Mean2 0.98 0.96 0.99 1.00

Mean MGGD 0.97 0.98 0.97 0.97 1.00
Mean RNBA 0.97 0.98 0.97 0.97 1.00 1.00

Avg avg 0.97 0.98 0.96 0.97 0.99 0.99 1.00

score, although this is not reported here. The most interesting part of that analysis shows that

while the strike rate is negatively correlated with all the estimated averages, it is more so (-

0.13) with the traditional average than with MGGD and RNBA estimates (all approximately

-0.05). The rank correlation of the batting index with all the GGD models are approximately

same — it is worst with the traditional average.
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Table 7: Batting average of Top Batsmen in 1-day cricket: MGGD estimates (Method 1) —
Estimating by mean of fitted GGD Models

Trad. Avg GGD fitted Mean Kaplan-Meir
GGD1 GGD2 GGD3 GGD4 GGD5 GGD6 GGD7 GGD8 GGD9 GGD∞

HM Amla 55.17 55.18 55.20 55.14 52.88 52.68 55.14 52.88 52.68 53.09
MG Bevan 53.58 53.79 53.73 52.44 47.08 46.69 52.44 47.08 46.68 46.13
IJL Trott 51.37 51.57 51.46 51.86 47.70 47.70 51.81 47.66 47.66 49.19
MEK Hussey 51.18 51.24 51.15 51.70 45.99 45.59 51.70 45.98 45.59 44.93
MS Dhoni 51.16 51.47 51.20 51.60 53.77 52.86 51.58 53.75 52.84 51.02
Z Abbas 47.63 47.70 47.78 47.50 46.32 46.22 47.50 46.32 46.22 45.83
IVA Richards 47.00 47.18 47.22 47.39 49.85 49.07 47.40 49.86 49.07 46.95
V Kohli 46.78 47.27 47.25 47.56 44.06 43.77 47.55 44.06 43.76 43.39
MJ Clarke 45.50 45.96 46.41 46.28 43.49 43.75 46.32 43.52 43.78 43.16
J Kallis 45.49 45.81 45.96 46.13 43.94 44.10 46.14 43.95 44.11 43.40
SR Tendulkar 45.16 45.28 45.42 45.64 44.78 44.92 45.69 44.83 44.97 44.64
AB de Villiers 44.28 44.43 44.30 44.32 43.10 42.97 44.32 43.10 42.97 42.91
Ml Hayden 43.81 43.99 43.99 43.67 43.12 43.13 43.66 43.11 43.12 43.02
SR Watson 43.05 43.56 43.33 43.66 53.13 52.81 43.64 53.09 52.78 44.84
RT Ponting 42.64 42.82 42.91 42.69 41.89 41.91 42.68 41.88 41.91 41.68
G Gambhir 41.86 42.10 42.09 42.06 42.29 43.62 42.06 42.29 43.62 40.92
M Yousuf 41.58 41.82 41.92 41.95 40.59 40.46 41.96 40.59 40.47 40.34
L Klusener 41.10 43.13 42.75 41.91 38.39 38.28 41.91 38.39 38.28 39.05
SC Ganguly 41.02 41.13 41.16 41.39 41.30 41.13 41.39 41.30 41.14 40.59
BC Lara 40.49 40.66 40.61 40.83 40.17 40.09 40.82 40.16 40.08 39.99
A Symonds 39.75 40.57 40.63 40.96 43.93 43.03 40.96 43.93 43.03 40.09
GC Smith 39.43 39.49 39.54 39.45 39.13 39.70 39.44 39.11 39.69 38.57
R Dravid 39.22 39.31 39.33 39.20 38.40 38.54 39.20 38.40 38.53 38.22
Ch Gayle 39.07 39.29 39.33 39.60 39.17 39.24 39.60 39.18 39.24 38.35
KP Pietersen 38.62 38.80 38.83 38.87 37.04 37.14 38.87 37.04 37.14 36.81
KC Sangakkara 38.13 38.18 38.29 38.06 37.12 37.10 38.03 37.09 37.07 37.18
AC Gilchrist 35.89 35.96 35.97 35.91 35.76 35.77 35.91 35.75 35.76 35.74
V Sehwag 35.11 35.15 35.17 35.17 35.00 34.96 35.17 35.00 34.96 34.95
ST Jayasuriya 32.68 32.77 32.80 32.85 32.78 32.73 32.87 32.80 32.75 32.66

4.1.1 Bradman’s Batting Average: Did it actually cross 100?

Finally we turn our attention to applying the method on individual players. To illustrate we take

the case of Don Bradman, not only because he was all time great, but also because of interest

regarding his batting average. His traditional (test match) batting average was 99.94 (would have

been 100 had he score 4 instead of 0 in his last inning); his Kaplan-Meir average would be 99.06

(incorrectly reported as 98.98 in [4]). Tables 7 and 8 summarize the comparison of fit across the 10

GGD models.

From these tables it is clear that the GGD2 is the best fit for Bradman’s scores. In addition we

also considered other reasonable models in the GGD class like

ℵ : α0 is different, α1 = α2 = . . . = α80, α81 = α82 = . . . ;

but none of them seem to fit any better.
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Table 8: Batting average of Top Batsmen in 1-day cricket: RNBA estimate (Method 2)–
Replacement of Notout scores (via GGD Model fitting) Before Averaging method

GGD substitution method
GGD2 GGD3 GGD4 GGD5 GGD6 GGD7 GGD8 GGD9 strike rate index

HM Amla 55.18 55.20 55.14 53.39 53.20 55.14 53.39 53.21 91.98 49.72
MG Bevan 53.79 53.73 52.43 47.52 47.15 52.43 47.52 47.15 74.16 36.98
IJL Trott 51.58 51.46 51.89 49.57 49.57 51.89 49.57 49.57 78.51 39.36
MEK Hussey 51.18 51.24 51.15 51.69 46.98 46.66 51.68 46.97 87.76 42.94
MS Dhoni 51.47 51.20 51.60 53.64 52.77 51.59 53.63 52.77 88.52 46.17
Z Abbas 47.70 47.78 47.44 45.66 45.58 47.45 45.67 45.59 84.80 39.61
IVA Richards 47.18 47.22 47.38 49.47 48.77 47.39 49.47 48.77 90.20 43.37
V Kohli 47.27 47.25 47.54 43.63 43.35 47.54 43.63 43.35 83.02 37.68
MJ Clarke 45.96 46.41 46.29 43.95 44.17 46.32 43.97 44.20 78.10 35.05
J Kallis 45.81 45.96 46.13 44.16 44.31 46.14 44.16 44.31 72.88 32.74
SR Tendulkar 45.28 45.42 45.73 44.90 45.05 45.73 44.91 45.05 86.32 38.98
AB de Villiers 44.43 44.30 44.32 42.95 42.81 44.32 42.95 42.81 91.29 39.80
Ml Hayden 43.99 43.99 43.65 43.24 43.25 43.65 43.24 43.25 78.96 34.32
SR Watson 43.56 43.33 43.65 53.65 52.73 43.64 53.63 52.72 89.84 42.84
RT Ponting 42.82 42.91 42.68 41.87 41.90 42.69 41.88 41.90 80.60 34.08
G Gambhir 42.10 42.09 42.05 42.31 43.75 42.05 42.31 43.75 86.58 36.65
M Yousuf 41.82 41.92 41.96 40.57 40.45 41.96 40.57 40.45 75.10 30.90
L Klusener 43.13 42.75 41.92 38.13 38.02 41.91 38.12 38.01 89.91 36.16
SC Ganguly 41.13 41.16 41.37 41.30 41.16 41.37 41.30 41.16 73.70 30.34
BC Lara 40.66 40.61 40.83 40.23 40.16 40.83 40.23 40.16 79.51 32.12
A Symonds 40.57 40.63 40.95 43.33 42.58 40.95 43.33 42.58 92.44 38.53
GC Smith 39.49 39.54 39.45 39.26 39.65 39.45 39.26 39.65 81.72 32.17
R Dravid 39.31 39.33 39.19 38.58 38.68 39.20 38.58 38.69 71.24 27.68
Ch Gayle 39.29 39.33 39.60 39.20 39.26 39.60 39.20 39.26 83.95 32.93
KP Pietersen 38.80 38.83 38.88 36.97 37.07 38.88 36.97 37.07 86.94 32.92
KC Sangakkara 38.18 38.29 38.05 37.48 37.46 38.05 37.49 37.47 75.19 28.33
AC Gilchrist 35.96 35.97 35.90 35.77 35.78 35.90 35.77 35.78 96.94 34.75
V Sehwag 35.15 35.17 35.17 34.97 34.92 35.17 34.97 34.92 103.94 36.43
ST Jayasuriya 32.77 32.80 32.87 32.73 32.67 32.87 32.73 32.68 91.21 29.88

While computing the mean of fitted distributions, a critical issue is where to truncate the distri-

bution. If the density is truncated at the maximum score, like 334 for Bradman, the total probability

falls substantially short of 1 for some of the GGD models. This is especially the case with Brad-

man, as his hazard rate was significantly lower than everybody else the game (Bradman’s hazard

was < 1%, while the rest of the great players have between 1.6% to 1.8% — another yardstick

which shows conclusively the greatness of Bradman and how much of an outlier his performance

truely was. That being the case, while for most players, one can truncate the upper end of the

score distribution at say 500 for the sake of computing the mean, without affecting the average

computation to any significant degree, in the case Bradman, one should truncate only at 700 or

higher. A possible extension of this work is to estimate the player’s expected score on the basis

of chosen model and the number of innings played by him and use that for truncation. This is

planned to be taken up in a followup work.
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Table 9: Rank order of top batsmen in 1 day cricket by different methods of computing averages
Player Trad. Avg K-M FM Model 6 SB Model 6 Fitted Mean GGD sub Avg avg strike rate Index
HM Amla 1 1 3 1 1 1 1 4 1
MG Bevan 2 5 6 6 3 4 4 26 12
IJL Trott 3 3 5 4 4 3 3 22 8
MEK Hussey 4 7 8 7 5 5 5 11 4
MS Dhoni 5 2 1 2 2 2 2 10 2
Z Abbas 6 6 7 8 8 8 8 15 7
IVA Richards 7 4 4 5 6 7 6 7 3
V Kohli 8 11 11 13 9 9 9 17 11
MJ Clarke 9 12 12 11 12 11 12 23 16
J Kallis 10 10 10 10 11 12 11 28 22
SR Tendulkar 11 9 9 9 10 10 10 14 9
AB de Villiers 12 14 16 15 13 13 13 5 6
Ml Hayden 13 13 14 14 14 14 14 21 18
SR Watson 14 8 2 3 7 6 7 9 5
RT Ponting 15 15 17 17 16 16 16 19 19
G Gambhir 16 16 13 12 15 15 15 13 13
M Yousuf 17 18 19 19 19 19 18 25 25
L Klusener 18 21 24 24 21 21 21 8 15
SC Ganguly 19 17 18 18 18 18 19 27 26
BC Lara 20 20 20 20 20 20 20 20 24
A Symonds 21 19 15 16 17 17 17 3 10
GC Smith 22 22 21 21 22 22 22 18 23
R Dravid 23 24 23 23 24 24 24 29 29
Ch Gayle 24 23 22 22 23 23 23 16 21
KP Pietersen 25 26 25 26 25 25 25 12 20
KC Sangakkara 26 25 26 25 26 26 26 24 28
AC Gilchrist 27 27 27 27 27 27 27 2 17
V Sehwag 28 28 28 28 28 28 28 1 14
ST Jayasuriya 29 29 29 29 29 29 29 6 27

Table 10a: P-values in Comparison of fit across GGD models: Bradman’s score
GGD2 GGD4 GGD5 GGD6 GGD∞

GGD1 0.0000 0.0001 0.0002 0.0006 0.0934
GGD2 0.5586 0.8202 0.8954 0.3263
GGD4 0.9733 0.8770 0.0000
GGD5 0.9011 0.0000
GGD6 0.0000

Table 10b: P-values in Comparison of fit across GGD models: Bradman’s score
GGD2 GGD3 GGD7 GGD8 GGD9 GGD∞

GGD1 0.0000 0.0000 0.0001 0.0003 0.0007 0.0934
GGD2 0.1778 0.4026 0.5990 0.7207 0.3263
GGD3 0.9513 0.9714 0.9662 0.3406
GGD7 0.8159 0.8770 0.3223
GGD8 0.6481 0.3052
GGD9 0.2911

4.1.2 Bevan’s Average: a case of major adjustment

As seen in Table 7, the traditional average grossly appear to overestimate the true average for few

players, most notably MG Bevan and MEK Hussey. We look at the case of Bevan more closely.

For Bevan’s 1 day career batting average, we fit the 10 GGD models - enclosed are the p-values

associated with the comparison.
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Table 11: P-values in Comparison of fit across GGD models: Bevan’s 1 day score
GGD2 GGD3 GGD4 GGD5 GGD6 GGD7 GGD8 GGD9 GGD∞

GGD1 0.4714 0.7498 0.1736 0.0333 0.0108 0.3066 0.0655 0.0215 0.9999
GGD2 0.8109 0.0841 0.0166 0.0056 0.2130 0.0400 0.0129 0.9999
GGD3 NA NA NA 0.0814 0.0161 0.0055 0.9999
GGD4 0.0042 0.0019 0.7409 0.0697 0.0213 0.9999
GGD5 0.0004 NA 0.7409 0.1061 0.9999
GGD6 NA NA 0.7409 1.0000
GGD7 0.0000 0.0000 0.0004
GGD8 0.1136 0.0368
GGD9 1.0000

Thus, GGD Model 6 appears to be the best fit; in this case with the estimated mean being 46.686

which is fairly close to the K-M estimator, but more appealing than the later for reasons described

earlier.

4.1.3 One Model does not fit all

Figure 2:

Figures 3 and 4 show the 10 fitted GGD models for 1 day openers scores. Tables 12a and 12b

give summary of fits for the 10 GGD models.

Let us first report results of fitting 10 GGD distribution for all 1-day openers (batsmen playing

at position 1 and 2). The data consists of all 11238 scores of the openers till April 6, 2009 in 1
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Figure 3:

Figure 4:
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-day matches; out of these 543 were notout innings and the remaining 10695 were scores from

completed innings. The figure below shows the frequency distribution of these scores, suitably

clubbed for representing here; however only raw or un-grouped was carried out for our numerical

analysis. The traditional average of these scores is 32.114 (while average of scores from completed

innings is only 28.325).

Table 12a: Summary of fit for 10 GGD models: score of 1-day openers
GGD Model No. 1 2 3 4 5
log likelihood -47963.95 -47661.60 -47635.12 -47622.15 -47603.55
No of parameters 1 2 3 3 4
estimated mean 31.54 31.45 31.42 31.33 31.68
Model No. 6 7 8 9 10
log likelihood -47602.30 -47611.42 -47592.83 -47591.58 -47479.67
No of parameters 5 4 5 6 195
estimated mean 31.65 31.34 31.69 31.66 31.99

Table 12b: P-values: GGD Model selection of 1-day openers
GGD2 GGD3 GGD4 GGD5 GGD6 GGD7 GGD8 GGD9 GGD∞

GGD1 1.6E-133 1.6E-143 3.6E-149 6.5E-156 3.2E-155 1.7E-152 2.5E-159 1E-158 3.6E-103
GGD2 3.4E-13 6.53E-19 6.2E-26 1.55E-25 1.61E-22 1.28E-29 2.76E-29 1.33E-12
GGD3 NA NA NA 5.81E-12 4.3E-19 9.27E-19 1.19E-07
GGD4 4.55E-27 1.77E-26 3.62E-06 1.85E-13 3.35E-13 9.61E-13
GGD5 5.45E-16 NA 3.62E-06 6.27E-06 9.28E-08
GGD6 NA NA 3.62E-06 0.000332
GGD7 1.07E-09 2.41E-09 0.000396
GGD8 0.113631 0.036797
GGD9 0.042319

Given the large number of data points, we select 1% level of significance and consequently

recommend GGD8 for modeling scores for 1 day openers, by noting that more refined models (9

and 10) are not significantly better than this one, while it is superior to all models which are nested

into this.

To draw a comparison, we now carry out the analysis for batsmen in No 11 position (last) at

the 1-day games. Here the number of observations is much less (only 2145) with a large number of

notout innings (1277). The highest score is 43, but only 17 scores are 22 or above. Figure 5 shows

the frequency distribution.

Because of the smaller range for scores, only 6 of the 10 models are pertinent here; Table 13

gives summary of fits for these 6 GGD models.

Figure 6 shows the 6 fitted GGD models for 1 day scores of No. 11 batsmen.
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Figure 5:

Figure 6:
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Table 13: Summary of fit for the 6 GGD models: score of 1-day No. 11 batsmen
Model No. GGD1 GGD2 GGD3 GGD4 GGD7 GGD∞
log likelihood -2675.14 -2629.02 -2626.83 -2628.53 -2626.70 -2598.28
No of parameters 1 2 3 3 4 44
estimated mean 7.31 7.91 8.01 7.93 8.01 8.95

5 Summary and Conclusion

This work proposes a class of Generalized Geometric Distributions for modeling scores of bats-

men in the game of cricket — the generalization stemming from nonconstant hazard values. The

estimation of parameters and selection of models within the family is discussed, specially in light

of notout scores.

It is shown that conventional batting average is quite inappropriate when some of the scores

are from notout innings. The traditional Kaplan-Meir approach is lot better, but it has couple

of limitations in the given context. Two approaches of estimating the true average based on the

Generalized Geometric distributions are proposed and illustrated in this work. While choice of

appropriate GGD model has been discussed at length, and the best possible GGD model may vary

from context to context, it is shown that there is a great deal of consistency in whatever GGD model

is adopted as long as it is not the simple geometric model. This should convincingly demonstrate

that it is time to move away from traditional batting average and adopt an estimate based on

fitting generalized geometric distribution, a special case of which coincides with the Kaplan Meir

estimate.

Note and Acknowledgement: I was always bothered by the ill-effect of notouts in computing

batting average. Since 1991-92, I have discussed with friends and cricket lovers, advocating the use

of Kaplan-Meir estimate in the context and also delivered couple of semi-formal seminars on the

topic. The notion and use of generalized geometric distribution emerged while I gave a seminar

at IIM Bangalore in 1998-99. I would like to thank IIM Bangalore for encouraging me to pursue

this research and sponsor presentation of my work on GGD in this context in the 57th Annual

Convention of the International Statistical Institute held in Durban during August 2009. Thanks

are also due to Mr. Diptendu Khan, my ex-student at Indian Statistical Institute, for helping me

with the data download. Diptendu also did a project with me on the use of Kaplan Meir estimator

in this context in 1996-97. I would also like to thank Mr. Arunabha Sengupta for encouraging me

to update the work and writing an article in the internet based on this research; the url for his
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article is: http://www.cricketcountry.com/cricket-articles/Scholarly-relook-of-batting-averages-

in-cricket-history-throw-shocking-numbers/8664
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