
LINEAR PROGRAMMING1

by

V. Chandra2 & M, R. Rao3

March 1998

Please address all correspondence to:

Dr. M. R. Rao
Indian Institute ofManagement Bangalore
Bannerghatta Road
Bangalore 560 076
India

Fax:(080)6644050

'To appear as a chapter of the Handbook of Algorithms edited by MJ. Atallah, CRC Press (1998)
2CS & Automation, Indian Institute of Science, Bangalore-560 012, India. chandru@csa.iisc.ernet.in

Indian Institute ofManagement - Bangalore, Bangalore 560 076, India. mrao@iimb.ernet.in

Copies of the Working Papers may be obtained from the FPM & Research OflBce

LINEAR PROGRAMMING

VIJAY CHANDRU, Indian Institute of Science, Bangalore 5G0 012, India.

M.R« RAO, Indian Institute of Management, Bangalore 560 076, India.

NOVEMBER, 1997

Dedicated to George Dantzig on this the bOth Anniversary of the Simplex Algorithm

Abstract

Linear programming has been a fundamental topic in the development of the computa-

tional sciences. The subject has its origins in the early work of L.B.J. Fourier on solving

systems of linear inequalities, dating back to the 1820's. More recently, a healthy compe-

tition between the simplex and interior point methods has led to rapid improvements in

the technologies of linear programming. This combined with remarkable advances in com-

puting hardware and software have brought linear programming tools to the desktop, in

a variety of application software for decision support. Linear programming has provided

a fertile ground for the development of various algorithmic paradigms. Diverse topics

such as symbolic computation, numerical analysis, computational complexity, computa-

tional geometry, combinatorial optimization, and randomized algorithms all have some

linear programming connection. This chapter reviews this universal role played by linear

programming in the science of algorithms.

1 Introduction

Linear programming has been a fundamental topic in the development of the computational sci-

ences [49]. The subject has its origins in the early work of L.B.J. Fourier [29] on solving systems

of linear inequalities, dating back to the 1820's. The revival of interest in the subject in the 1940's

was spearheaded by G.B.Dantzig [18] in USA and L.V.Kantorovich [44] in the erstwhile USSR. They

were both motivated by the use of linear optimization for optimal resource utilization and economic

planning. Linear programming, along with classical methods in the calculus of variations, provided

the foundations of the field of mathematical programming, which is largely concerned with the theory

and computional methods of mathematical optimization. The 1950's and 1960's marked the period

when linear programming fundamentals (duality, decomposition theorems, network flow theory, ma-

trix factorizations) were worked out in conjunction with the advancing capabilities of computing

machinery [19].

The 1970's saw the realization of the commercial benefits of this huge investment of intellectual

effort. Many large-scale linear programs were formulated and solved on mainframe computers to

support applications in industry (for example: Oil, Airlines) and for the state (for example: Energy

Planning, Military Logistics). The 1980's were an exciting period for linear programmers. The poly-

nomial time-complexity of linear programming was established. A healthy competition between the

simplex and interior point methods ensued which finally led to rapid improvements in the technolo-

gies of linear programming. This combined with remarkable advances in computing hardware and

software have brought linear programming tools to the desktop, in a variety of application software

(including spreadsheets) for decision support.

The fundamental nature of linear programming in the context of algorithmics is borne out by a

few examples.

• Linear programming is at the starting point for variable elimination techniques on algebraic

constraints [11] which in turn forms the core of algebraic and symbolic computation.

• Numerical linear algebra and particularly sparse matrix technology was largely driven in its

early development by the need to solve large-scale linear programs [36,61].

• The complexity of linear programming played an important role in the 197Q's in the early stages

of the development of the polynomial hierarchy and particularly in the -AfP-completeness and

P-completeness in the theory of computation [67,68].

• Linear-time algorithms based on "prune and search" techniques for low-dimensional linear

programs have been used extensively in the development of computational geometry [24].

• Linear programming has been the testing ground for very exciting new devlopments in ran-

domized algorithms [60].

• Relaxation strategies based on linear programming have played a unifying role in the construc-

tion of approximation algorithms for a wide variety of combinatorial optimization problems [16,

32,74].

In this chapter we will encounter the basic algorithmic paradigms that have been invoked in the

solution of linear programs. An attempt has been made to provide intuition about some fairly deep

and technical ideas without getting bogged down in details. However, the details are important and

the interested reader is invited to explore further through the references cited. Fortunately, there

are many excellent texts, monographs and expository papers on linear programming [8,5,15,19,62,

65,67,69,71], that the reader can choose from, to dig deeper into the fascinating world of linear

programming.

2 Geometry of Linear Inequalities

Two of the many ways in which linear inequalities can be understood are through algorithms or

through non-constructive geometric arguments. Each approach has its own merits (aesthetic and

otherwise). Since the rest of this chapter will emphasize the algorithmic approaches, in this section

we have chosen the geometric version . Also, by starting with the geometric version, we hope to

hone the reader's intuition about a convex polyhedron, the set of solutions to a finite system of

linear inequalities4. We begin with the study of linear, homogeneous inequalities. This involves the

geometry of (convex) polyhedral cones.

2.1 Po lyhedra l Cones

A homogeneous linear equation in n variables defines a hyperplane of dimension (n-1) which contains

the origin and is therefore a linear subspace. A homogeneous linear inequality defines a halfspace

on one "side" of the hyperplane, defined by converting the inequality into an equation. A system of

linear homogeneous inequalities therefore, defines an object which is the intersection of finitely many

halfspaces, each of which contains the origin in its boundary. A simple example of such an object is

the non-negative orthant. Clearly the objects in this class resemble cones with the apex defined at

the origin and with a prismatic boundary surface. We call them convex polyhedral cones.

A convex polyhedral cone is the set of the form

/C = {x\Ax < 0}

Here A is assumed to be an m x n matrix of real numbers. A set is convex if it contains the line

segment connecting any pair of points in the set. A convex set is called a convex cone if it contains

all non-negative, scalar multiples of points in it. A convex set is polyhedral if it is represented by a

finite system of linear inequalities. As we shall deal exclusively with cones that are both convex and

polyhedral, we shall refer to them as cones.

The representation of a cone as the solutions to a finite system of homogeneous linear inequalities

is sometimes, referred to as the "constraint" or "implicit" description. It is implicit because it takes

an algorithm to generate points in the cone. An "explicit" or "edge" description can also be derived

for any cone.

Theorem 2.1 Every cone /C = {x : Ax < 0} has an "edge" representation of the following form.

/C = {x : x = $^=1 e^/iji Mi > 0 V?} where each distinct edge of K, is represented by a point cJ.

4 For the study of infinite systems of linear inequalities see Chapter (NOTE TO EDITOR: CROSS-REFEERENCE

CHAPTER BY VAVASIS ON CONVEX PROGRAMMING HERE) of this handbook

Thus, for any cone we have two representations:

• CONSTRAINT REPRESENTATION: /C = {x : Ax < 0 }

• EDGE REPRESENTATION: K, = {x : X = EfJLy fl > 0 }

The matrix E is a representation of the edges of K,. Each column E{, of E contains the coordi-

nates of a point on a distinct edge. Since positive scaling of the columns is permitted, we fix the

representation by scaling each column so that the last non-zero entry is either 1 or -1. This scaled

matrix E is called the Canonical Matrix of Generators of the cone /C.

Every point in a cone can be expressed as a positive combination of the columns of E. Since the

number of columns of E can be huge, the edge representation does not seem very useful. Fortunately,

the following tidy result helps us out.

Theorem 2.2 (Caratheodory) [10] For any cone /C, every x 6 /C can be expressed as the positive

combination of at most d edge points, where d is the dimension of K.

CONIC DUALITY

The representation theory for convex polyhedral cones exhibits a remarkable duality relation.

This duality relation is a central concept in the theory of linear inequalities and linear programming

as we shall see later.

Let /C be an arbitrary cone. The dual of fC is given by

/C* = {u : xTu < 0, VxG/C}

Theorem 2.3 The representations of a cone and its dual are related by

K = {x : Ax < 0} = {x : x = Efi, \i > 0} and

K* = {u : ETu < 0} = {u : u = AT\ X > 0}

Corollary 2.4 /C* is a convex polyhedral cone and duality is involutory (that is (/C*)*). = K.

As we shall see, there is not much to linear inequalities or linear programming, once we have

understood convex polyhedral cones.

2.2 Convex Polyhedra

The transition from cones to polyhedra may be conceived of, algebraically, as a process of dehomog-

enization. This is to be expected, of course, since polyhedra are represented by systems of (possibly

in homogeneous) linear inequalities and cones by systems of homogeneous linear inequalities. Geomet-

rically, this process of dehomogenization corresponds to realizing that a polyhedron is the Minkowski

or set sum of a cone and a poiytope (bounded polyhedron). But before we establish this identity, we

need an algebraic characterization of poly topes. Just as cones in £ n are generated by taking positive

linear combinations of a finite set of points in 8in, poly topes are generated by taking convex linear

combinations of a finite set of (generator) points.

Definition: Given K points { s ^ s 2 , • *-tx
K} in 9ftn the Convex Hull of these points is given by

K K

>=1, a>0}
t=i i=i

i.e. the convex hull of a set of points in §in is the object generated in 3?n by taking all convex linear

combinations of the given set of points. Clearly, the convex hull of a finite list of points, is always

bounded.

Theorem 2,5 [80] P is a polytope, if and only if, it is the convex hull of a finite set of points.

DEFINITION: An extreme point of a convex set S is a point x G S satisfying

x = ax + (1 — a)£, x, x £ 5, a € (0,1) —> x = x = x

Equivalently, an extreme point of a convex set S is one that cannot be expressed as a convex linear

combination of some other points in S. When S is a polyhedron, extreme points of S correspond to

the geometric notion of corner points. This correspondence is formalized in the corollary below.

Corollary 2.6 A polytope P is the convex hull of its extreme points.

Now we go on to discuss the representation of (possibly unbounded) convex polyhedra.

Theo rem 2.7 Any convex polyhedron P represented by a linear inequality system {y : yA < c} can

be also represented as the set addition of a convex cone R and a convex polytope Q.

P = Q + R=z{x:x = x + fi x e Q , f € R}

K K

> = X> a > 0}

It follows from the statement of the theorem that P is non-empty if and only if the polytope Q

is non-empty. We proceed now to discuss the representations of R and Q, respectively.

T h e cone R associated with the polyhedron P is called the recession or characteristic cone of

P. A hyperplane representation of R is also readily available. It is easy to show that

R = {r : AT < 0}

An obvious implication of the theorem and lemma above is that P equals the polytope Q if and only

if JR = {0}. In this form, the vectors {rJ} are called the extreme rays of P.

T h e polytope Q associated with the polyhedron P is the convex hull of a finite collection {x*}

of points in P. It is not difficult to see that the minimal set {x1} is precisely the set of extreme points

of P. A non-empty pointed polyhedron P, it follows, must have atleast one extreme point.

The affine hull of P is given by

x* € P Vi, and sumcti = 1

Clearly, the x* can be restricted to the set of extreme points of P in the definition above. Furthermore,

A.H.{P} is the smallest affine set that contains P. A hyperplane representation of A.H.{P} is also

possible. First let us define the implicit linear equality system of P to be

{A=x = &=} = {Ai,x = b{ Vx e P}

Let the remaining inequalities of P be defined as

A+x < 6+

It follows that P must contain at least one point x satisfying

A~x = 6== and A+x < 6+

Lemma 2.8 A.H.{P} = {x : A=x = 6=}

The dimension of a polyhedron P in 3f£n is defined to be the dimension of the affine hull of P,

which equals the maximum number of affinely independent points, in A.H.{P}, minus one. P is said

to be full-dimensional if its dimension equals m or, equivalently, if the affine hull of P is all of &n.

A support ing hyperplane of the polyhedron P is a hyperplane H

H = {x : bTx = z*}

satisfying

bTx <z* Vx 6 P

b x = z* for some i g ?

A supporting hyperplane H of P is one that touches P such that all of P is contained in a halfspace

of H. Note that a supporting plane can touch P at more than one point.

A face of a non-empty polyhedron P is a subset of P that is either P itself or is the intersection

of P with a supporting hyperplane of P. It follows that a face of P is itself a non-empty polyhedron.

A face of dimension, one less than the dimension of P, is called a facet. A face of dimension one is

called an edge (note that extreme rays of P are also edges of P). A face of dimension zero is called

a vertex of P (the vertices of P are precisely the extreme points of P). Two vertices of P are said

to be adjacent if they are both contained in an edge of P. Two facets are said to be adjacent if they

both contain a common face of dimension one less than that of a facet. Many interesting aspects of

the facial structure of polyhedra can be derived from the following representation lemma.

Lemma 2.9 F is a face of P~ {x : Ax < 6} if and only if F is non-empty and F = P D {x : Ax = b},

where Ax <b is a subsystem of Ax <b.

As a consequence of the lemma, we have an algebraic characterization of extreme points of

polyhedra.

Theorem 2.10 Given a polyhedron P, defined by {x : Ax < b}, x% is an extreme point of P if and

only if it is a face of P satisfying Atxt = 6* where ({A1), (&*)) is a submatrix of (A, b) and the rank

of Ax equals n.

Now we come to Farkas Lemma which says that a linear inequality system has a solution if

and only if a related (polynomial size) linear inequality system has no solution. This lemma is

representative of a large body of theorems in mathematical programming known as theorems of the

alternative

Lemma 2.11 (Farkas) [26] Exactly one of the alternatives

I. 3 x : Ax < b II. 3 y > 0 : ATy = 0, bTy < 0

is true for any given real matrices J4, 6.

2.3 Opt imizat ion and Dual Linear Programs

The two fundamental problems of linear programming (which are polynomially equivalent) are:

• Solvability: This is the problem of checking if a system of linear constraints on real (rational)

variables is solvable or not. Geometrically, we have to check if a polyhedron, defined by such

constraints, is nonempty.

• Optimization: This is the problem (LP) of optimizing a linear objective function over a

polyhedron described by a system of linear constraints.

Building on polarity in cones and polyhedra, duality in linear programming is a fundamental

concept which is related to both the complexity of linear programming and to the design of algorithms

for solvability and optimization. We will encounter the solvability version of duality (called Farkas'

Lemma) while discussing the Fourier elimination technique below. Here we will state the main

duality results for optimization. If we take the primal linear program to be

(P) min {ex: Ax > 6}

there is an associated dual linear program

(D) max{6Ty : ATy = cT, y > 0}

and the two problems satisfy

1. For any x and y feasible in (P) and (D) (i.e. they satisfy the respective constraints), we have

ex > bTy (weak duality).

2. (P) has a finite optimal solution if and only if (D) does.

3. x* and y* are a pair of optimal solutions for (P) and (D) respectively, if and only if x* and

y* are feasible in (P) and (D) (i.e. they satisfy the respective constraints) and ex* = bTy*

(strong duality).

4. x* and y* are a pair of optimal solutions for (P) and (D) respectively, if and only if x* and y*

are feasible in (P) and (D) (i.e. they satisfy the respective constraints) and (Ax* - b)Ty* = 0

(complementary slackness).

The strong duality condition above gives us a good stopping criterion for optimization algorithms.

The complementary slackness condition, on the other hand gives us a constructive tool for moving

from dual to primal solutions and vice-versa. The weak duality condition gives us a technique for

obtaining lower bounds for minimization problems and upper bounds for maximization problems.

Note that the properties above have been stated for linear programs in a particular form. The

reader should be able to check, that if for example the primal is of the form

(P') min {ex : Ax = 6, x > 0}

then the corresponding dual will have the form

~<:ATy<cT}{

The tricks needed for seeing this is that any equation can be written as two inequalities, an un-

restricted variable can be substituted by the difference of two non-negatively constrained variables

and an inequality can be treated as an equality by adding a non-negatively constrained variable

to the lesser side. Using these tricks, the reader could also check that dual construction in linear

programming is involutory (i.e. the dual of the dual is the primal).

8

2.4 Complexity of Linear Equations and Inequalities

COMPLEXITY OF LINEAR ALGEBRA

Let us restate the fundamental problem of linear algebra as a decision problem.

CCS = {(A, b): 3 x € Qn, Ax = 6} (1)

In order to solve the decision problem on CCS it is useful to recall homogeneous linear equations.

A basic result in linear algebra is that any linear subspace of Qn has two representations, one from

hyperplanes and the other from a vector basis.

C = {x £ Qn : Ax = 0}

C = {x e QT : * = Cy, yeQk}

Corresponding to a linear subspace C there exists a dual (orthogonal complementary) subspace

C* with the roles of the hyperplanes and basis vectors of C exchanged.

£* = {z : Cz = 0}

£* = {z : z = Ax}

dimensionC + dimensionC* = n

Using these representation results it is quite easy to establish the Fundamental Theorem of Linear

Algebra.

Theorem 2.12 Either Ax=b for some x or yA=0, yb^O for some y.

Along with the basic theoretical constructs outlined above let us also assume knowledge of the

Gaussian Elimination Method for solving a system of linear equations. It is easily verified that on a

system of size m by n, this method uses 0(m2n) elementary arithmetic operations. However we also

need some bound on the size of numbers handled by this method. By the size of a rational number

we mean the length of binary string encoding the number. And similarly for a matrix of numbers.

Lemma 2.13 For any square matrix S of rational numbers, the size of the determinant of S is

polynomially related to the size of S itself.

Since all the numbers in a basic solution (ie. basis generated) of Ax=b are bounded in size by

sub-determinants of the input matrix (A,b) we can conclude that CCS is a member of AfV. The

Fundamental Theorem of Linear Algebra further establishes that CCS is in MV ft coAfV. And finally

the polynomiality of Gaussian Elimination establishes that CCS is in V.

COMPLEXITY OP LINEAR INEQUALITIES:

From our earlier discussion of polyhedra, we have the following algebraic characterization of

extreme points of polyhedra.

Theorem 2.14 Given a polyhedron P, defined by {x : Ax < 6}, xl is an extreme point of P if and

only if it is a face of P satisfying A*x% = bx where ((A1), (b1)) is asubmatrix of{A,b) and the rank

of A1 equals m.

Corollary: The decision problem of verifying the membership of an input string (A,b) in the

language £/ = {(A,b) : 3x such that Ax < 6} belongs to AfV.

Proof: It follows from the theorem that every extreme point of the polyhedron P = {x : Ax < 6}

is the solution of an (nxn) linear system whose coefficients come from (A, 6). Therefore we can guess a

polynomial length string representing an extreme point and check its membership in P in polynomial

time. O

A consequence of Farkas Lemma is that the decision problem of testing membership of input

(A,b) in the language

£ / = {(i4,6): 3 x such that Ax < b}

is in AfV f| coAfV. That £ / can be recognized in polynomial time, follows from algorithms for linear

programming that we now discuss.

We are now ready for a tour of some algorithms for linear programming. We start with the

classical technique of Fourier which is interesting because of its simple syntactic specification. It

leads to simple proofs of the duality principle of linear programming that was alluded to above. We

will then review the Simplex method of linear programming [18], a method that uses the vertex-edge

structure of a convex polyhedron to execute an optimization march. The simplex method has been

finely honed over almost five decades now. We will spend some time with the Ellipsoid method and

in particular with the polynomial equivalence of solvability (optimization) and separation problems.

This aspect of the Ellipsoid method [34] has had a major impact on the identification of many

tractable classes of combinatorial optimization problems. We conclude the tour of the basic methods

with a description of Karmarkar's [46] breakthrough in 1984 which was an important landmark in the

brief history of linear programming. A noteworthy role of interior point methods has been to make

practical, the theoretical demonstations of tractability of various aspects of linear programming,

including solvability and optimization, that were provided via the Ellipsoid method.

In later sections we will review the more sophisticated (and naturally esoteric) aspects of linear

programming algorithms. This will include strongly polynomial algorithms for special cases, ran-

domized algorithms and specialized methods for large-scale linear programming. Some readers may

notice that we do not have a special section devoted to the discussion of parallel computation in the

context of linear programming. This is partly because we are not aware of a well developed frame-

work for such a discussion. We have instead introduced discussion and remarks about the effects of

parallelism in the appropriate sections of this chapter.

10

3 Fourier's Projection Method

Linear programming is at the starting point for variable elimination techniques on algebraic con-

straints [11] which in turn forms the core of algebraic and symbolic computation. Constraint systems

of linear inequalities of the form Ax < 6, where A is an m x n matrix of real numbers are widely used

in mathematical models. Testing the solvability of such a system is equivalent to linear programming.

We now describe the elegant syntactic variable elimination technique due to Fourier [29].

Suppose we wish to eliminate the first variable xx from the system Ax < b. Let us denote

/+ = {%: Ait > 0} I" = {i: An < 0} 1° = { i : An = 0}

Our goal is to create an equivalent system of linear inequalities Ax < b defined on the variables

X =

• If J"1" is empty then we can simply delete all the inequalities with indices in J~ since

they can be trivially satisfied by choosing a large enough value for xx. Similarly, if I"

is empty we can discard all inequalities in J+ .

• For each A; 6 / + , I € /"" we add -An times the inequality AkX < 6* to Am times

Aix < 6|. In these new inequalities the coefficient of x\ is wiped out, i.e. x\ is

eliminated. Add these new inequalities to those already in 1°.

• The inequalities {Anx < b{} for all i 6 1° represent the equivalent system on the

variables x = (x2, X3, • • •, xn).

x l
Eliminate Xi

x i
Eliminate:

Xo

Figure 1 Variable Elimination and Projection

11

Repeat this construction with Ax < 6 to eliminate X2 and so on until all variables are eliminated.

If the resulting b (after eliminating xn) is non-negative we declare the original (and intermediate)

inequality systems as being consistent. Otherwise5 6 ^ 0 and we declare the system inconsistent.

As an illustration of the power of elimination as a tool for theorem proving, we show now that

Farkas Lemma is a simple consequence of the correctness of Fourier elimination. The lemma gives a

direct proof that solvability of linear inequalities is in AfV f\ coMV.

Farkas Lemma Exactly one of the alternatives

I. 3 x 6 » n : Ax < b II. 3 y e &+ : y*A = 0, y'b < 0

is true for any given real matrices Ay 6.

Proof: Let us analyze the case when Fourier Elimination provides a proof of the inconsistency

of a given linear inequality system Ax < b. The method clearly converts the given system into

RAx < Rb where RA is zero and JR6 has atleast one negative component. Therefore there is some

row of i£, say r, such that rA = 0 and rb < 0. Thus -»J implies II. It is easy to see that / and II

cannot both be true for fixed A, 6. D

In general, the Fourier elimination method is quite inefficient. Let k be any positive integer and

n the number of variables be 2* + k + 2. If the input inequalities have lefthand sides of the form

±z r ± xa db xt for all possible 1 < r < s < t < n it is easy to prove by induction that after k

variables are eliminated, by Fourier's method, we would have at least 2? inequalities. The method

is therefore exponential in the worst case and the explosion in the number of inequalities has been

noted, in practice as well, on a wide variety of problems. We will discuss the central idea of minimal

generators of the projection cone that results in a much improved elimination method [40].

First let us identify the set of variables to be eliminated. Let the input system be of the form

P = { (z , t i) e £ n i + n * | Ax + Bu < 6}

where u is the set to be eliminated. The projection of P onto x or equivalently the effect of eliminating

the u variables iŝ

Px = { x € » n i | 3u e W12 such that Ax + Bu < b}

Now Wj the projection cone of P, is given by

W = {w

5Note that the final b may not be defined if all the inequalities are deleted by the monotone sign condition of the first

step of the construction described above. In such a situation we declare the system Ax <b strongly consistent since it

is consistent for any choice of b in 9ftm. In order to avoid making repeated references to this exceptional situation, let

us simply assume that it does not occur. The reader is urged to verify that this assumption is indeed benign.

12

A simple application of Farkas Lemma yields a description of Px in terms of W.

Projection Lemma Let G be any set of generators (eg, the set of extreme rays) of the cone W.

ThenPx = (gA)x < gb

The lemma, sometimes attributed to Cernikov [9], reduces the computation of Px to enumerating

the extreme rays of the cone W or equivaJently the extreme points of the polytope W f\ { w €

4 The Simplex Method

Consider a polyhedron /C = {x 6 3Rn : Ax = 6, x > 0}. Now K, cannot contain an infinite (in both

directions) line since it is lying within the non-negative orthant of &n. Such a polyhedron is called

a pointed polyhedron. Given a pointed polyhedron K we observe that

• If /C / 0 then /C has at least one extreme point.

• If min{cx : Ax = 6, x > 0} has an optimal solution then it has an optimal extreme point

solution.

Figure 2 The Simplex Path

These observations together are sometimes called the fundamental theorem of linear programming

since they suggest simple finite tests for both solvability and optimization. To generate all extreme

points of /C, in order to find an optimal solution, is an impractical idea. However, we may try to run

a partial search of the space of extreme points for an optimal solution. A simple local improvement

13

search strategy of moving from extreme point to adjacent extreme point until we get to a local

optimum is nothing but the simplex method of linear programming [18,19]. The local optimum also

turns out to be a global optimum because of the convexity of the polyhedron fC and the objective

function ex.

Procedure: Primal Simplex(/C,c)

0. Initialize:

• XQ := an extreme point of fC

• k := 0

1. Iterative Step:

do

If for al l edge directions T>k at Xk> the objective function is

non-decreasing, i . e .

cd>0 Vde£>*

then exit and return optimal xjfe.

Else pick some dk in T>k such that cdk < 0.

If dk > 0 then declare the linear program unbounded in objective

value and exit.

Else Xfc+1 := Xk + 9k* dk, where

= max{0 : xk + 0 • dk > 0}

Jfc : = k + 1

od

2. End

Remarks:

1. In the initialization step we assumed that an extreme point x0 of the polyhedron /C is available.

This also assumes that the solvability of the constraints defining K has been established. These

assumptions are reasonable since we can formulate the solvability problem as an optimization

problem, with a self-evident extreme point, whose optimal solution either establishes unsolv-

ability of Ax = 6, x > 0, or provides an extreme point of /C. Such an optimization problem

is usually called a Phase I model.The point being, of course, that the simplex method, as

14

described above, can be invoked on the Phase I model and if successful, can be invoked once

again to carry out the intended minimization of car. There are several different formulations of

the Phase I model that have been advocated. Here is one.

min{v0 : Ax + bvQ = 6, x > 0, v0 > 0}

The solution (z, VQ)T = (0, • • •, 0,1) is a self-evident extreme point and vo = 0 at an optimal

solution of this model is a necessary and sufficient condition for the solvability of Ax = 6, x > 0.

2. The scheme for generating improving edge directions uses an algebraic representation of the

extreme points as certain bases, called feasible bases, of the vector space generated by the

columns of the matrix A. It is possible to have linear programs for which an extreme point is

geometrically over-determined (degenerate) i.e., there are more than d facets of K that contain

the extreme point, where d is the dimension of /C. In such a situation, there would be several

feasible bases corresponding to the same extreme point. When this happens, the linear program

is said to be primal degenerate.

3. There are two sources of non-determinism in the primal simplex procedure. The first involves

the choice of edge direction dk made in step 1. At a typical iteration there may be many

edge directions that are improving in the sense that cdk < 0. Dantzig's Rule, Maximum

Improvement Rule, and Steepest Descent Rule are some of the many rules that have been used

to make the choice of edge direction in the simplex method. There is, unfortunately, no clearly

dominant rule and successful codes exploit the empirical and analytic insights that have been

gained over the years to resolve the edge selection nondeterminism in the simplex method.

The second source of non-determinism arises from degeneracy. When there are multiple feasible

bases corresponding to an extreme point, the simplex method has to pivot from basis to adjacent

basis by picking an entering basic variable (a psuedo edge direction) and by dropping one of the

old ones. A wrong choice of the leaving variables may lead to cycling in the sequence of feasible

bases generated at this extreme point. Cycling is a serious problem when linear programs

are highly degenerate as in the case of linear relaxations of many combinatorial optimization

problems. The Lexicographic Rule (Perturbation Rule) for choice of leaving variables in the

simplex method is a provably finite method (i.e., all cycles are broken).

A clever method proposed by Bland (cf. [71]) preorders the rows and columns of the matrix

A. In case of non-determinism in either entering or leaving variable choices, Bland's Rule just

picks the lowest index candidate. All cycles are avoided by this rule also.

IMPLEMENTATION ISSUES: BASIS REPRESENTATIONS

15

The enormous success of the simplex method has been primarily due to its ability to solve large

size problems that arise in practice. A distinguishing feature of many of the linear problems that

are solved routinely in practice, is the sparsity of the constraint matrix. So from a computational

point of view, it is desirable to take advantage of the sparseness of the constraint matrix. Another

important consideration in the implementation of the simplex method is to control the accumulation

of round off errors that arise because the arithmetic operations are performed with only a fixed

number of digits and the simplex method is an iterative procedure.

An algebraic representation of the simplex method in matrix notation is as follows :

0: Find an i n i t i a l feas ible extreme point x° , and the corresponding feas ib le bas is

B (of the vector space generated by the columns of the constraint matrix A) . If

no such XQ e x i s t s , stop, there i s no feas ib le solution. Otherwise, l e t t = 0,

and go to step 1.

1: Partit ion the matrix A as A = (B,N), the solution vector x as x = (XB>XN) and

the objective function vector c as c = (CB,CJV), corresponding to the columns in

B.

2: The extreme point xl i s given by xt = (x£,0) , where Bx*B = b

3: Solve the system TB B = CB and calculate r = c# - TB N. If r > 0, s top, the

current solution x* = (zj^O), i s optimal. Otherwise, l e t T * = minJ{Tj}, where

Tj i s the j t h component of r (actually one may pick any TJ < 0 as r*).

4: Let a* denote the kth column of N corresponding to rjfe. Find y* such that B yk =

o-k

5: Find XB(p)/ypk = nrint-{xB(i)/yt-jfc : ytjb > 0} where xs{i) and yik denote the Ith component

of XB and yk respect ively.

6: The new basis B i s obtained from B by replacing the pth column of B by the kth

column of N. Let the new feasible basis B be denoted as B. Return to step 1.

LU FACTORIZATION

At each iteration, the simplex method requires the solution of the following systems:

BXB = b ; TTBB = CB and Byk = a*.

After row interchanges, if necessary, any basis B can be factorized as B = LU where L is a

lower triangular matrix and U is an upper triangular matrix. So solving LUXB = b is equivalent to

16

Solving the triangular systems Lv-b and UxB = v. Similarly, for Byk = ak, we solve Lw == a* and

Uyk = w. Finally, for * £ # = ca, we solve TTBL = A and AJ7 = cB.

Let the current basis B and the updated basis B be represented as

B = (ai,a2,...,Op.!,Op,ap+lj...,€&„») and J? = (a l f a 2 l . . . ,ap- i l a p + i l a l H .2 , . .M^i«0

An efficient implementation of the simplex method requires the updating of the triangular ma-

trices L and U as triangular matrices L and U where B = ££T and B = it/'. This is done by first

obtaining H = (uuu2,".,Hp-i>Kp+i».•.,ttmjti;) where Ui is the t<A column of U and to = L~lak. The

matrix JET has zeros below the main diagonal in the first p — 1 columns and zeros below the element

immediately under the diagonal in the remaining columns. The matrix H can be reduced to an upper

triangular matrix by Gaussian elimination which is equivalent to multiplying H on the left by ma-

trices M{, i = p,p +1, . . . , m - 1, where Mj differs from an identity matrix in column j which is given

by (0,..., 0,1, my, 0...0)T, where rrtj is in position j +1. Now U is given by if = Afm-.i, Mm_2 , ~.MVH

and i is given by L = IMp"1,..., M ~ ! r Note that Mj"1 is My with the sign of the off-diagonal term

my reversed.

The LU factorization preserves the sparsity of the basis B, in that the number of non-zero entries

in L and U is typically not much larger than the number of non-zero entries in B. Furthermore,

this approach" effectively controls the accumulation of round off errors and maintains good numerical

accuracy. In practice, the LU factorization is periodically recomputed for the matrix B instead

of updating the factorization available at the previous iteration. This computation of B = LU is

achieved by Gaussian elimination to reduce B to an upper triangular matrix (for details, see for

instance [36,61,62]). There are several variations of the basic idea of factorization of the basis matrix

B, as described here, to preserve sparsity and control round off errors.

REMARK: The simplex method is not easily amenable to parallelization. However, some steps such

as identification of the entering variable and periodic refactorization can be efficiently parallelized.

GEOMETRY AND COMPLEXITY OP THE SIMPLEX METHOD

An elegant geometric interpretation of the simplex method can be obtained by using a column

space representation [19], i.e. 3?m+1 coordinatized by the rows of the (m-f 1) x n matrix j

In fact it is this interpretation that explains why it is called the simplex method. The bases of

A correspond to an arrangement of simplicial cones in this geometry and the pivoting operation

corresponds to a physical pivot from one cone to an adjacent one in the arrangement. An interesting

insight that can be gained from the column space perspective is that Karmarkar's interior point

method can be seen as a natural generalization of the simplex method [77,13].

17

However, the geometry of linear programming, and of the simplex method, has been largely

developed in the space of the x variables, i.e. in 3Rn. The simplex method walks along edge paths

on the combinatorial graph structure defined by the boundary of convex polyhedra. These graphs

are quite dense (Balinski's theorem [83] states that the graph of <f-dimensional polyhedron must be

d-connected). A polyhedral graph can also have a huge number of vertices since the Upper Bound

Theorem of McMullen, see [83], states that the number of vertices can be as large as O(kW2l) for

a polytope in d dimensions defined by k constraints. Even a polynomial bound on the diameter of

polyhedral graphs is not known. The best bound obtained to date is O(i1+!og<i) of a polytope in d

dimensions defined by k constraints. Hence it is no surprise that there is no known variant of the

simplex method with a worst-case polynomial guarantee on the number of iterations.

Klee and Minty [48] exploited the sensitivity of the original simplex method of Dantzig, to

projective scaling of the data, and constructed exponential examples for it. These example were

simple projective distortions of the hypercube to embed long isotonic (improving objective value)

paths in the graph. Scaling is used in the Klee-Minty construction, to trick the choice of entering

variable (based on most negative reduced cost) in the simplex method and thus keep it on an

exponential path. Later, several variants of the entering variable choice (best improvement, steepest

descent, etc.) were all shown to be susceptible to similar constructions of exponential examples (cf.

[71])-

Despite its worst-case behaviour, the simplex method has been the veritable workhorse of linear

programming for five decades now. This is because both empirical [19,6] and probabilistic [8,38]

analyses indicate that the number of iterations of the simplex method is just slightly more than

linear in the dimension of the primal polyhedron.

The ellipsoid method of Shor [75] was devised to overcome poor scaling in convex program-

ming problems and therefore turned out to be the natural choice of an algorithm to first establish

polynomial-time solvability of linear programming. Later Karmarkar [46] took care of both projection

and scaling simultaneously and arrived at a superior algorithm.

5 The Ellipsoid Method

The Ellipsoid Algorithm of Shor [75] gained prominence in the late 1970's when Hacijan (pronounced

Khachiyan) [37] showed that this convex programming method specializes to a polynomial-time

algorithm for linear programming problems. This theoretical breakthrough naturally led to intense

study of this method and its properties. The survey paper by Bland et al. [7] and the monograph

by Akgiil [2] attest to this fact. The direct theoretical consequences for combinatorial optimization

problems was independently documented by Padberg and Rao [66], Karp and Papadimitriou [47] and

18

Grotschel, Lovasz and Schrijver [33]. The ability of this method to implicitly handle linear programs

with an exponential list of constraints and maintain polynomial-time convergence is a characteristic

that is the key to its applications in combinatorial optimization. For an elegant treatment of the many

deep theoretical consequences of the Ellipsoid Algorithm, the reader is directed to the monograph

by Lovasz [50] and the book by Grotschel, Lovasz and Schrijver [34].

Computational experience with the Ellipsoid Algorithm, however, showed a disappointing gap

between the theoretical promise and practical efficiency of this method in the solution of linear

programming problems. Dense matrix computations as well as the slow average-case convergence

properties are the reasons most often cited for this behaviour of the Ellipsoid Algorithm. On the

positive side though, it has been noted (cf. Ecker and Kupferschmid [23]) that the Ellipsoid method

is competitive with the best known algorithms for (non-linear) convex programming problems.

Let us consider the problem of testing if a polyhedron Q € 3?*, defined by linear inequalities, is

non-empty. For technical reasons let us assume that Q is rational, i.e. all extreme points and rays

of Q are rational vectors or equivalently that all inequalities in some description of Q involve only

rational coefficients. The Ellipsoid method does not require the linear inequalities describing Q to be

explicitly specified. It suffices to have an oracle representation of Q. Several different types of oracles

can be used in conjunction with the ellipsoid method [34,47,66]. We will use the strong separation

oracle described below.

Oracle: Strong Separation(Q,y)

Given a vector y € 3^, decide whether y

hyperplane that separates y from Q; more

vector c € 3RJ such that cTy <: min{cTx : X

€ Q, and

precisely,

eQ}.

if not find a

find a

The ellipsoid algorithm initially chooses an ellipsoid large enough to contain a part of the poly-

hedron Q if it is non-empty. This is easily accomplished because we know that if Q is non-empty

then it has a rational solution whose (binary encoding) length is bounded by a polynomial function

of the length of the largest coefficient in the linear program and the dimension of the space.

The centre of the ellipsoid is a feasible point if the separation oracle tells us so. In this case, the

algorithm terminates with the co-ordinates of the centre as a solution. Otherwise, the separation

oracle outputs an inequality that separates the centre point of the ellipsoid from the polyhedron

Q. We translate the hyperplane defined by this inequality to the centre point. The hyperplane

slices the ellipsoid into two halves, one of which can be discarded. The algorithm now creates a new

ellipsoid that is the minimum volume ellipsoid containing the remaining half of the old one. The

algorithm questions if the new centre is feasible and so on. The key is that the new ellipsoid has

substantially smaller volume than the previous one. When the volume of the current ellipsoid shrinks

19

to a sufficiently small value, we are able to conclude that Q is empty. This fact is used to show the

polynomial time convergence of the algorithm.

Figure 3 Shrinking Ellipsoids

Ellipsoids in 3f̂ are denoted as E(Ary) where A is an d x d positive definite matrix and y G 3ft1*

is the centre of the ellipsoid E(A,y).

E(A,y) = {x€&\(z-y)TA-l{z-y) < 1}

The ellipsoid algorithm is described on the iterated values, Ak and xk which specify the underlying

ellipsoids Ek(Ak>xk).

20

Procedure: Ellipsoid (Q)

0. Initialize:

• N := N(Q) (comment: iteration bound)

• R := R(Q) (comment: radius of the initial ellipsoid/sphere Eo)

• AQ := R2I

• XQ := 0 (comment: centre of EQ)

• k := 0

1. Iterative Step:

while k < N

call Strong Separation (Q,z*)

if x* G Q halt

else hyperplane {x £ 3ftrf | cTx = CQ} separates a:̂ from Q

Update

y/cTAkc

k := fc + 1

endwhile

2. Empty Polyhedron:

• halt and declare XNQ i s empty"

3. End

The crux of the complexity analysis of the algorithm is on the apriori determination of the

iteration bound. This in turn depends on three factors. The volume of the initial ellipsoid EQ,

the rate of volume shrinkage C^f^O < e~Tw) and the volume threshold at which we can safely

conclude that Q must be empty. The assumption of Q being a rational polyhedron is used to argue

that Q can be modified into a full-dimensional polytope without affecting the decision question

("Is Q non-empty ?"). After careful accounting for all these technical details and some others (eg.

compensating for the round-off errors caused by the square root computation in the algorithm) it is

21

possible to establish the following fundamental result.

Theorem 5.1 There exists a polynomial g{d,<f>) such that the e l l ipso id method runs in time

bounded by T g(d, <f>) where <f> is an upper bound on the size of linear inequalities in some description

of Q and T is the maximum time required by the oracle Strong Separation^, y) on inputs y of

size at most g(d, </>).

The size of a linear inequality is just the length of the encoding of all the coefficients needed to

describe the inequality. A direct implication of the theorem is that solvability of linear inequalities

can be checked in polynomial time if strong separation can be solved in polynomial time. This

implies that the standard linear programming solvability question has a polynomial-time algorithm

(since separation can be effected by simply checking all the constraints). Happily, this approach

provides polynomial-time algorithms for much more than just the standard case of linear program-

ming solvability. The theorem can be extended to show that the optimization of a linear objective

function over Q also reduces to a polynomial number of calls to the strong separation oracle on Q.

A converse to this theorem also holds, namely separation can be solved by a polynomial number of

calls to a solvability/optimization oracle [34]. Thus, optimization and separation are polynomially

equivalent. This provides a very powerful technique for identifying tractable classes of optimization

problems. Semi-definite programming and submodular function minimization are two important

classes of optimization problems that can be solved in polynomial time using this property of the

Ellipsoid method.

SEMI-DEFINITE PROGRAMMING

The following optimization problem defined on symmetric (n x n) real matrices

(SDP) min {YC*X : A.X = B, X y 0}

is called a semi-definite program. Note that X y 0 denotes the requirement that X is a positive

semi-definite matrix, and F •G for nxn matrices F and G denotes the product matrix (F{j * Gij).

From the definition of positive semi-definite matrices, X y 0 is equivalent to

qTXq > 0 for every g 6 » n

Thus (SDP) is really a linear program on O(n2) variables with an (uncountably) infinite number

of linear inequality constraints. Fortunately, the strong separation oracle is easily realized for these

constraints. For a given symmetric X we use Cholesky factorization to identify the minimum eigen-

value Amtn. If Xfnin is non-negative then X y 0 and if, on the other hand, Am»n is negative we have

a separating inequality

> 0

22

where 7 m t n is the eigenvector corresponding to Amin. Since the Cholesky factorization can be com-

puted by an O(n3) algorithm, we have a polynomial-time separation oracle and an efficient algorithm

for (SDP) via the Ellipsoid method. Alizadeh [3] has shown that interior point methods can also be

adapted to solving (SDP) to within an additive error € in time polynomial in the size of the input

and log i .

This result has been used to construct efficient approximation algorithms for Maximum Stable

Sets and Cuts of Graphs [32], Shannon Capacity of Graphs, Minimum Colorings of Graphs. It has

been used to define hierarchies of relaxations for integer linear programs that strictly improve on

known exponential-size linear programming relaxations [51].

MINIMIZING SUBMODULAR S E T FUNCTIONS

The minimization of submodular set functions is a generic optimization problem which contains

a large class of important optimization problems as special cases [25]. Here we will see why the

ellipsoid algorithm provides a polynomial-time solution method for submodular minimization.

Definition 5.2 Let N be a finite set A real valued set function f defined on the subsets of N is

• submodular if f{X UY) + f{X n Y) < f(X) + f{Y) forX,YCN.

Example 5.3 Let G = (V7E) be an undirected graph with V as the node set and E as the edge

set. Let Cij > 0 be the weight or capacity associated with edge (ij) G E. For S CV, define the cut

function c(S) = Ylies jeVXS^i- The cut function defined on the subsets ofV is submodular since

c(X) + c(Y) - c(X U Y) - c(X n 7) = Eiex\Y,j&Y\x 2c,y > 0.

The optimization problem of interest is

min{/(X) : X C N}

The following remarkable construction that connects submodular function minimization with

convex function minimization is due to Lovasz (cf. [34]).

Definition 5.4 The Lovasz extension /(.) of a submodular function /(.) satisfies

. f: [0 ,1] " -* ft.

) where x = £i€XA'z'> x e t0 '1^' XI is the incidenC€ vector of I for

each I 6 I , A/ > 0 for each I in 1, and 1 = {Ji,/2, • • *,h} with 0 jfe Ix C h C • • • C h C N}.

Note that the representation x = J2iei ^ixl *$ unique given that the A/ > 0 and that the sets

in I are nested.

23

It is easy to check that /(.) is a convex function. Lovasz also showed that the minimization of

the submodular function /(.) is a special case of convex programming by proving

min{f{X) : X C N} = min{/(x) : x 6 [0,1]"}

Further, if x* is an optimal solution to the convex program and

x* =

lei

then for each A/ > 0, it can be shown that / 6 X minimizes / . The Ellipsoid method can be used

to solve this convex program (and hence submodular minimization) using a polynomial number of

calls to an oracle for / (this oracle returns the value of f(X) when input X).

6 Interior Point Methods

The announcement of the polynomial solvability of linear programming followed by the probabilistic

analyses of the simplex method in the early 1980's left researchers in linear programming with a

dilemma. We had one method that was good in a theoretical sense but poor in practice and another

that was good in practice (and on average) but poor in a theoretical worst-case sense. This left the

door wide open for a method that was good in both senses. Narendra Karmarkar closed this gap

with a breathtaking new projective scaling algorithm. In retrospect, the new algorithm has been

identified with a class of nonlinear programming methods known as logarithmic barrier methods.

Implementations of a primal-dual variant of the logarithmic barrier method have proven to be the

best approach at present. The recent monogragh by S.J. Wright [81] is dedicated to primal-dual

interior point methods. It is a variant of this method that we descibe below.

It is well known that moving through the interior of the feasible region of a linear program using

the negative of the gradient of the objective function, as the movement direction, runs into trouble

because of getting "jammed" into corners (in high dimensions, corners make up most of the interior of

a polyhedron). This jamming can be overcome if the negative gradient is balanced with a "centering"

direction. The centering direction in Karmarkar's algorithm is based on the analytic center yc of a

full dimensional polyhedron V = {x : ATy < c} which is the unique optimal solution to

^ z j) : ATy +z = c}

Recall the primal and dual forms of a linear program may be taken as

(P) min{cx : Ax = 6, x > 0}

(D) max{bTy:ATy<c}

24

The logarithmic barrier formulation of the dual (JD) is

n
(2i) : ATy + z = c}

Notice that as (D^ is equivalent to (D) as /x ~> 0+. The optimality (Karush-Kuhn-Tucker) conditions

for (JDM) are given by

DxDze = /xe

Ax = b

ATy + z - c

where Dx and Dz denote n x n diagonal matrices whose diagonals are x and z respectively. Notice

that if we set fi to 0, the above conditions are precisely the primal-dual optimality conditions;

complementary slackness, primal and dual feasibility of a pair of optimal (P) and (D) solutions.

The problem has been reduced to solving the above equations in as,y,z. The classical technique for

solving equations is Newton's method which prescribes the directions

Ay = -(ADxD-lAT)-lAD~l(iie-DxDte)

Az = -ATAy

Ax = D-l{iie-DxDze) - DxDJlAz (2)

The strategy is to take one Newton step, reduce \i and iterate until the optimization is complete.

The criterion for stopping can be determined by checking for feasibility (x, z > 0) and if the duality

gap (xlz) is close enough to 0. We are now ready to describe the algorithm.

25

Procedure: Primal-Dual Interior

0. Initialize:

• io >

• Jfe : =

1. Iterative

do

Stop

/* A

MM-i

jfc : =

od

2 . E n d

0, » € * » , « , > 0 , M O > 0 , « > 0 , / » 0

0

Step:

1 1 J±Xfc — Of JTX. yik ~f" Zfc •— C aHQ Xi Zjfc j ^ c .

—̂ Vk "i" Off; /\yjc

XA:, Ayjt, Azjt are the Newton directions from (2) */

ife+1

Remarks:

1. The primal-dual algorithm has been used in several large-scale implementations. For appro-

priate choice of parameters, it can be shown that the number of iterations in the worst-case

is 0(v^log(€o/€)) to reduce the duality gap from €o to e [69,81]. While this is sufficient to

show that the algorithm is polynomial time, it has been observed that the "average" number

of iterations is more like O(lognlog (eo/e)). However, unlike the simplex method we do not

have a satisfactory theoretical analysis to explain this observed behaviour.

2. The stepsizes a% and aj? are chosen to keep x/b+i and zjt+1 strictly positive. The ability in

the primal-dual scheme to choose separate stepsizes for the primal and dual variables is a

major computational advantage that this method has over the pure primal or dual methods.

Empirically this advantage translates to a significant reduction in the number of iterations.

3. The stopping condition essentially checks for primal and dual feasibility and near complemen-

tary slackness. Exact complementary slackness is not possible with interior solutions. It is

possible to maintain primal and dual feasibility through the algorithm, but this would require

26

a Phase I construction via artificial variables. Empirically, this feasible variant has not been

found to be worthwhile. In any case, when the algorithm terminates with an interior solution,

a post-processing step is usually invoked to obtain optimal extreme point solutions for the

primal and dual. This is usually called the purification of solutions and is based on a clever

scheme described by Megiddo [56].

4. Instead of using Newton steps to drive the solutions to satisfy the optimality conditions of (JDM),

Mehrotra [59] suggested a predictor-corrector approach based on power series approximations.

This approach has the added advantage of providing a rational scheme for reducing the value

of /z. It is the predictor-corrector based primal-dual interior method that is considered the

current winner in interior point methods. The OBI code of Lustig, Marsten and Shanno [52]

is based on this scheme. CPLEX 4.0 [17], a general purpose linear (and integer) programming

solver, also contains implementations of interior point methods.

Saltzman [70] describes a parallelization of the OBI method to run on shared-memory vector

multiprocessor architectures. Recent computational studies of parallel implementations of sim-

plex and interior point methods on the SGI Power Challenge (SGI R8000) platform indicate

that on all but a few small linear programs in the NETLIB linear programming benchmark

problem set, interior point methods dominate the simplex method in run times. New advances

in handling Cholesky factorizations in parallel are apparently the reason for this exceptional

performance of interior point methods.

As in the case of the simplex method, there are a number of special structures in the matrix A

which can be exploited by interior point methods to obtain improved efficiencies. Network flow

constraints, generalized upper bounds (GUB) and variable upper bounds (VUB) are structures

that often come up in practice and which can be useful in this context [14,79].

5. Interior point methods, like ellipsoid methods, do not directly exploit the linearity in the prob-

lem description. Hence they generalize quite naturally to algorithms for semidefinite and con-

vex programming problems. More details of these generalizations are given in chapter (NOTE

TO EDITOR: CROSS-REFEERENCE CHAPTER BY VAVASIS ON CONVEX PROGRAM-

MING HERE) of this handbook. Karmarkar [45] has proposed an interior-point approach for

integer programming problems. The main idea is to reformulate an integer program as the

minimization of a quadratic energy function over linear constraints on continuous variables.

Interior-point methods are applied to this formulation to find local optima.

7 Strongly Polynomial Methods

The number of iterations and hence the number of elementary arithmetic operations required for

the Ellipsoid Method as well as the Interior Point Method is bounded by a polynomial function of

the number of bits required for the binary representation of the input data. Recall that the size of

a rational number a/b is defined as the total number of bits required in the binary representation

of a and 6. The dimension of the input is the number of data items in the input. An algorithm is

said to be strongly polynomial if it consists of only elementary arithmetic operations (performed on

rationals of size bounded by a polynomial in the size of the input) and the number of such elementary

arithmetic operations is bounded by a polynomial in the dimension of the input.

It is an open question as to whether there exists a strongly polynomial algorithm for the general

linear programming problem. However, there are some interesting partial results:

• Tardos [78] has devised an algorithm for which the number of elementary arithmetic operations

is bounded by a polynomial function of n, m and the number of bits required for the binary

representation of the elements of the constraint matrix A which is m x n. The number of

elementary operations does not depend upon the right hand side or the cost coefficients.

• Megiddo [57] described a strongly polynomial algorithm for checking the solvability of lin-

ear constraints with at most two non-zero coefficients per inequality. Later, Hochbaum and

Naor [39] showed that Fourier Elimination can be specialized to provide a strongly polynomial

algorithm for this class.

• Megiddo [58] and Dyer [21] have independently designed strongly polynomial (linear-time)

algorithms for linear programming in fixed dimensions. The number of operations for these

algorithms is linear in the number of constraints and independent of the coefficients but doubly

exponential in the number of variables.

The rest of this section details these three results and some of their consequences.

7.1 Combinatorial Linear Programming

Consider the linear program, (LP) Max{cx : Ax = 6, x > 0}, where A is a m x n integer matrix.

The associated dual linear program is Min {yb : y A > c}. Let L be the maximum absolute

value in the matrix and let A = (nL)n . We now describe Tardos' algorithm for solving {LP) which

permits the number of elementary operations to be free of the magnitudes of the "rim" coefficients

6 and c.

The algorithm uses Procedure 1 to solve a system of linear inequalities. Procedure 1, in turn,

calls Procedure 2 with any polynomial-time linear programming algorithm as the required subroutine.

28

Procedure 2 finds the optimal objective function value of a linear program and a set of variables which

are zero in some optimal solution, if the optimum is finite. Note that Procedure 2 only finds the

optimal objective value and not an optimal solution. The main algorithm also calls Procedure 2

directly with Subroutine 1 as the required subroutine. For a given linear program, Subroutine 1

finds the optimal objective function value and a dual solution, if one exists. Subroutine 1, in turn,

calls Procedure 2 along with any polynomial-time linear programming algorithm as the required

subroutine. We omit the detailed descriptions of the Procedures 1 & 2 and Subroutine 1 and instead

only give their input/output specifications.

Algorithm: Tardos

INPUT: A l inear programming problem max{cx : Ax = 6, x > 0}

OUTPUT: An optimal so lut ion, i f i t ex i s t s and the optimal object ive

function value.

1. Call

Procedure 1 to test whether {Ax = 6, x > 0} is feasible. If the system

is not feasible, the optimal objective function value = —oo, stop.

2. Call Procedure 1, to test whether {yA > c} is feasible. If the system

is not feasible, the optimal objective function value =+oo, stop.

3. Call Procedure 2 with the inputs as the linear program Max{cx : Ax =

b, x > 0} and Subroutine 1 as the required subroutine. Let X{ = 0, i G

K be the set of equalities identified.

4. Call Procedure 1 to find a feasible solution z* to

{Ax = 6, x > 0, X{ = 0, i € K). The solution z* is optimal and the

optimal objective function value is ex*

5. End

Specification

INPUT: A

OUTPUT:

of Procedure 1:

linear system A

Either Ax < b i s

x < 6, where

infeasible

A

or

i s

X

a

i s

m

a

x n matrix .

feasible solution.

29

Specification of Procedure 2:

INPUT: Linear program Max{cx : Ax = 6, x > 0} , which has a feasible

solution and

a subroutine which for a given integer vector c with || cj|oo < n2 A and

a set K of indices, determines max{cz : Ax = 6, x > 0, x»- = 0, i 6 if}

and if the maximum is f in i te , finds an optimal dual solution.

OUTPUT: The maximum objective function

value z* of the input linear program max{c x : A x = 6, z > 0,} and

the set K of indices such z» = 0, i £ K for some optimum solution to

the input linear program.

Specification

INPUT: A

of Subroutine 1:

Linear program max{cx

is feasible and || C||OQ < n2 A.

OUTPUT:

solution

The Optimal objective

y*, if it exists.

: Ax =

function

6, x >

value

o,

z"

Xi = 0,

and an optimal

, which

dual

The validity of the algorithm and the analysis of the number of elementary arithmetic operations

required are in the paper by Tardos [78]. This result may be viewed as an application of techniques

from diophantine approximation to linear programming. A scholarly account of these connections is

given in the book by Schrijver [71].

REMARK: Linear programs with {0, ± 1} elements in the constraint matrix A arise in many

applications of polyhedral methods in combinatorial optimization. Network flow problems (shortest

path, maximum flow and transshipment) [1] are examples of problems in this class. Such linear

programs, and more generally linear programs with the matrix A made up of integer coefficients of

bounded magnitude, are known as combinatorial linear programs. The algorithm described shows

that combinatorial linear programs can be solved by strongly polynomial methods.

7,2 Fourier Elimination and LI(2):

We now describe a special case of the linear programming solvability problem for which Fourier

elimination yields a very efficient (strongly polynomial) algorithm. This is the case LI(2) of linear

inequalities with at most two variables per inequality. Nelson [63] observed that Fourier elimination

is subexponential in this case. He showed that the number of inequalities generated never exceeds

30

O(mnrio«nl logn). Later Aspvall & Shiloach [4] obtained the first polynomial-time algorithm for

solving LI(2) using a graph representation of the inequalities. We give a high-level description of

the technique of Hochbaum & Naor [39] that combines Fourier elimination and a graph reasoning

technique to obtain the best known sequential complexity bounds for £1(2).

An interesting property of £1(2) systems is that they are closed under Fourier Elimination.

Therefore the projection of an £/(2) system on to a subspace whose coordinates are a subset of the

variables is also an £1(2) system. Note that £1(3) does not have this closure property. Indeed £1(3)

is unlikely to have any special property since any system of linear inequalities can be reduced to an

instance of £/(3) with 0,±l coefficients [42].

Given an instance of £1(2) of the form Ax < b with each row of A containing at most two nonzero

coefficients we construct a graph G{V,E) as follows. The vertices V are xo, xi, • • •, xn corresponding

to the variables of the constraints (XQ is an extra dummy variable). The edges E of G are composed

of pairs (xt-, XJ) if xt- and Xj are two variables with nonzero coefficients of at least one inequality

in the system. There are also edges of the form (xo,Xfc) if x^ is the only variable with a nonzero

coefficient in some constraint. Let us also assume that each edge is labelled with all the inequalities

associated with its existence.

Aspvall & Shiloach [4] describe a "grapevine algorithm" that takes as input a "rumour" Xj = a

and checks its authenticity i.e. checks if a is too small, too large or within the range of feasible

values of Xj. The idea is simply to start at node Xj and set Xj = a. Obviously, each variable Xk that

is a neighbour of XJ in G gets an implied lower bound or upper bound (or both) depending on the

sign of the coefficient of x^ in the inequality shared with Xj. These bounds get propogated further

to neighbours of the x* and so on. If this propogation is carried out in a breadth-first fashion, it is

not hard to argue that the implications of setting Xj = a are completely revealed in 3n - 2 stages.

Proofs of inconsistency can be traced back to delineate if a was either too high or too low a value

for Xj.

The grapevine algorithm is similar to Bellman & Ford's classical shortest path algorithm for

graphs which also takes O(mn) effort. This subroutine provides the classification test for being able

to execute binary search in choosing values for variables. The specialization of Fourier's algorithm

for £/(2) can be described now.

31

Algorithm Fourier 1/(2):

For j = l,2,---n

1. The inequalities of each edge (zj,Zfc) define a convex polygon Qjk in

Zj,Zfc-space. Compute Jk the sorted collection of Xj coordinates of the

corner (extreme) points of Qjk* Let J denote the sorted union (merge)

of the Jk (zfc a neighbour of Xj in G).

2. Perform a binary search on the sequence J for a feasible value of Xj.

If we succeed in finding a feasible value for Xj among the values in J

we fix Xj at that value and contract vertex Xj with Zo- Move to the

next variable j <- j + 1 and repeat.

3. Else we know that the sequence is too coarse and that all feasible

values lie in the strict interior of some interval [s},z|] defined by

consecutive values in J. In this latter case we prune all but the two

essential inequalities, defining the edges of the polygon Qjk> for

each of the endpoints zj and Xj.

4. Eliminate Xj using standard Fourier elimination.

End

Notice that at most four new inequalities are created for each variable elimination. Also note

that the size of J is always O(ra). The complexity is dominated by the search over J . Each search

step requires a call to the ^grapevine" procedure and there are at most n logm calls. Therefore the

overall time-complexity is O(mn2logm) which is strongly polynomial in that it is polynomial and

independent of the size of the input coefficients.

An open problem related to LI(2) is the design of a strongly polynomial algorithm for optimization

of an arbitrary linear function over LI(2) constraints. This would imply, via duality, a strongly

polynomial algorithm for generalized network flows (flows with gains and losses).

7.3 Fixed Dimensional LP's: Prune and Search

Consider the linear program max{cz : Ax < 6} where i i s a m x n matrix tha t includes the non-

negativity constraints. Clearly, for fixed dimension n, there is a polynomial-time algorithm because

32

. tn .
there are at most J J system of linear equations to be solved, to generate all extreme points

n

of the feasible region. However, Megiddo [56] and Dyer [21] have shown that for the above linear

program with fixed n, there is a linear-time algorithm that requires 0(m) elementary arithmetic

operations on numbers of size bounded by a polynomial in the input data. The algorithm is highly

recursive. Before we give an outline of the algorithm, some definitions are required.

DEFINITION 1: Given a linear program max{cx : Ax < 6} and a linear equality fx = g,

(i) the inequality fx<q said to hold for the optimum if either

(a) we know that Ax < b is feasible and

max{cx : Ax < 6, fx < q} > max{cz : Ax < b,fx = q}

or

(b) we know a row vector y > 0 such that yA = f and yb < q,

(ii) the inequality fx > q is said to hold for the optimum if either

(a) we know that Ax < b is feasible and

max{cx : Ax < b,fx > q} > max{cz : Ax < 6, fx = q}

or

(b) we know a vector y > 0 such that yA = —/ and yb < —q.

DEFINITION 2: For a given linear program max{cx : Ax < b} and a given linear equation fx = q,

the position of the optimum of the linear program relative to the linear equation is said to be known

if either we know that fx<q holds for an optimum or fx > q holds for an optimum.

An outline of the algorithm is presented below. The algorithm requires an oracle, denoted as

Procedure 1, with inputs as the linear program max{cx : Ax < b} where A is a m x n matrix and a

system of p linear equations Fx = d with the rank of F being r. The output of Procedure 1 is either

a solution to the linear program (possibly unbounded or infeasible) or a set of fp/22] equations

in Fx = d relative to each of which we know the position of the optimum of the linear program.

Algorithm Sketch: Prune & Search

Call Procedure 1 with inputs as the l inear program max{cx : Ax < 6} and

the system of m equations Ax = fe. Procedure 1 either solves the l inear

program or ident i f ies k = [m/22n] equations in Ax = 6 re lat ive to each of

which we know the position of the optimum of the linear

program. The identif ied equations are then omitted from the system Ax = 6.

The result ing subsystem, A\X = &i has mi = m - k equations. Procedure 1 i s

applied again with the original given l inear program and the system

of equations A\x = &i as the inputs. This process i s repeated unt i l e i ther

the l inear program i s solved or we know the position of

the optimum with respect to each of the equations in Ax = 6. In the l a t t e r

case the system Ax < b i s infeas ible .

We next describe the input/output specification of Procedure 1. The procedure is highly recursive

and splits into a lot of cases. This procedure requires a linear-time algorithm for the identification

of the median of a given set of rationals in linear time.

Specif icat ion of Procedure 1:

INPUT: Linear program max{cx : Ax < b} where m x n matrix and a system

of p equations Fx = d where rank of F i s r.

OUTPUT: A solution to the l inear program or a set of [p/22r~]

equations in Fx = d re lat ive to each of which we know the pos i t ion of

the optimum as in Definition 2.

For fixed n, Procedure 1 requires O(p+m) elementary arithmetic operations on numbers of size

bounded by a polynomial in the size of the input data. Since at the outset p = m, algorithm Prune

k Search solves linear programs with fixed n in linear time. Details of the validity of the algorithm

as well as analysis of its linear time complexity for fixed n are given by Megiddo [56], Dyer [21] and

in the book by Schrijver [71]. As might be expected, the linear-time solvability of linear programs

in fixed dimension has important implications in the field of computational geometry which deals

largely with two and three dimensional geometry. The book by Edelsbrunner [24] documents these

connections.

The linear programming problem is known to be P-complete and therefore we do not expect

to find a parallel algorithm that achieves polylog run time. However, for fixed n, there are simple

polylog algorithms [22]. In a recent paper, Sen [72] shows that linear programming in fixed dimension

n can be solved in O(loglogn+I m) steps using m processors in & CRCW PRAM.

34

8 Randomized Methods for Linear Programming

The advertising slogan for randomized algorithms has been "simplicity and speed" [60]. In the case

of fixed-dimensional linear programming there appears to be some truth in the advertisement. In

stark contrast with the very technical deterministic algorithm outlined in the last section, we will

see that an almost trivial randomized algorithm will achieve comparable performance (but of course

at the cost of determinism).

Consider a linear programming problem of the form

min{cx : Ax <b}

with the following properties:

• The feasible region {x : Ax < 6} is non-empty and bounded.

• The objective function c has the form (1,0,.. .,0).

• The minimum to the linear program is unique and occurs at an extreme point of the feasible

region.

• Each vertex of {x : Ax < b} is defined by exactly n constraints where A is m x n.

Note that none of these assumptions compromise the generality of the linear programming problem

that we are considering.

Let S denote the constraints Ax < 6. A feasible B C S is called optimal if it defines the uniquely

optimal extreme point of the feasible region. The following randomized algorithm due to Sharir and

Welzl [76] uses an incremental technique to obtain the optimal basis of the input linear program.

Algorithm: ShW

1.

2.

3.

4.

INPUT: The constraint set S and a feasible basis T.

O U T P U T : The optimal basis for the linear program.

If S equals T, return T;

Pick a random constraint s

f = ShW(«S\{s},T);

If the point defined by T

Else output ShW(«S,opt({s}

End

6 S. Now define

satisfies s, output T;

UT))

35

The subroutine opt when given an input of n + 1 or less constraints H C S returns an optimal

basis for the linear program with constraints defined by H (and objective function ex). It has been

shown [54] that algorithm ShW has an expected running time of O(min{mnexp v^nln (ra+ 1), 7i42nm}).

Thus algorithm ShW is certainly linear expected time for fixed n but has a lower complexity than

Prune k Search if n is allowed to vary.

9 Large Scale Linear Programming

Linear programming problems with thousands of rows and columns are routinely solved either by

variants of simplex method or by interior point methods. However, for several linear programs that

arise in combinatorial optimization, the number of columns (or rows in the dual) are too numerous to

be enumerated explicitly. The columns, however, often have a structure which is exploited to generate

the columns as and when required in the simplex method. Such an approach which is refered to as

column generation is illustrated next on the cutting stock problem (Gilmore and Gomory [31]) which

is also known as the bin packing problem in the computer science literature.

9.1 Cut t ing Stock Problem

Rolls of sheet metal of standard length L are used to cut required lengths k7i = 1,2, ..,m. The j t h

cutting pattern should be such that atJ-, the number of sheets length /» cut from one roll of standard

length L must satisfy Y%Li aijk ^ L. Suppose ni,i = 1,2, ..,m sheets of length U are required. The

problem is to find cutting patterns so as to minimize the number of rolls of standard length L that

are used to meet the requirements. A linear programming formulation of the problem is as follows:

Let XJJ j = 1,2, ..,n denote the number of times the j t h cutting pattern is used. In general,

Xj, j = 1,2, ..,n should be an integer but in the formulation below the variables are permitted to be

fractional.

(PI) 7

Subject to YJj-i VijXj >n{ i = 1,2, . . ,m

where £ £ i ^ < L j = 1,2,.., n

The formulation can easily be extended to allow for the possibility of p standard lengths, Z*,

k = 1,2, . . . ,p from which the TI» units of length /,-, i = 1,2, ..,ra are to be cut.

The cutting stock problem can also be viewed as a bin packing problem. Several bins, each of

standard capacity L are to be packed with ni units of item i, each of which uses up capacity of U in

36

a bin. The problem is to minimize the number of bins used.

9.1.1 Column generation

In general, the number of columns in (PI) is too large to enumerate all the columns explicitly. The

simplex method, however, does not require all the columns to be explicitly written down. Given

a basic feasible solution and the corresponding simplex multipliers W{yi = 1,2, ..,m, the column to

enter the basis is determined by applying dynamic programming to solve the following knapsack

problem:

ra

(P2) z=max JTtiw

m

Subject to y f̂t'Gt < L

at- > Oand integer i = 1,2, ..,m

Let a^i = 1,2,..,m denote an optimal solution to (P2). If z > 1, the kth column to enter the

basis has coefficients a^. = a^i = 1,2, ..,m.

Using the identified columns, a new improved (in terms of the objective function value) basis is

obtained and the column generation procedure is repeated. A major iteration is one in which (P2)

is solved to identify, if there is one, a column to enter the basis. Between two major iterations,

several minor iterations may be performed to optimize the linear program using only the available

(generated) columns.

If z < 1 the current basic feasible solution is optimal to (PI). From a computational point of

view, alternative strategies are possible. For instance, instead of solving (P2) to optimality, a column

to enter the basis can be indentified as soon as a feasible solution to (P2) with an objective function

value greater than 1 has been found. Such an approach would reduce the time required to solve (P2)

but may increase the number of iterations required to solve (PI).

A column, once generated may be retained, even if it comes out of the basis at a subsequent

iteration, so as to avoid generating the same column again later on. However, at a particular

iteration some columns which appear unattractive in terms of their reduced costs, may be discarded

in order to avoid having to store a large number of columns. Such columns can always be generated

again subsequently, if necessary. The rationale for this approach is that such unattractive columns

will rarely be required subsequently.

The dual of (PI) has a large number of rows. Hence column generation may be viewed as row

generation in the dual. In other words, in the dual we start with only a few constraints explicitly

written down. Given an optimal solution w to the current dual problem (i.e. with only a few

constraints which have been explicitly written down) find a constraint that is violated by w or

conclude that no such constraint exists. The problem to be solved for identifying a violated constraint,

if any, is exactly the separation problem that we encountered in Section 5.

9,2 Decomposi t ion

Large scale linear programming problems sometimes have a block diagonal structure. Consider for

instance, the following linear program:

{1-6) max^J=1 ex {i)

Subject to H*=\ Aj*j = b (2)

x3 >0 j= l,2,..,p (4)

where A* i s a m x rij matrix; D3 is a m j x rij matrix; XJ is a nj x 1 column vector; c3 is a 1 x rij

row vector; b is a m x 1 column vector; d? is a mj x 1 column vector.

The constraints (2) are referred to as the linking master constraints. The p sets of constraints

(3) and (4) are referred to as sub-problem constraints. Without the constraints (2), the problem

decomposes into p separate problems which can be handled in parallel. The Dantzig-Wolfe [20]

decomposition approach to solving (P3) is described next.

Clearly, any feasible solution to (P3) must satisfy constraints (3) and (4). Now consider the

polyhedron Pj, j = 2,3, ..,p defined by the constraints (3) and (4). By the representation theorem

of polyhedra (see Section 2) a point x3 G Pj can be written as
h3 9j

x3 =

Y<Pjk = 1

Pjk > 0 * =1 ,2 , ...,*,-

fijk > 0 fc=l,2,...,#

where x3k (k = 1,2, ...,/ij) are the extreme points and y3k (k = 1,2, ...,<7j) are the extreme rays of

Now substituting for xJ, j = 2,3, ...,p in (1) and (2), (P3) is written as

Subject to Alxl + £ i = 2 fet-i {A3x3k)pjk + ££_i (i4V*)fiifc| = b (5)

jt̂ j/?jjfe = 1 j = 2 , J , ..,p (6)

PjJk ^ 0 i = = 2 , 3 , . . , p ; fc = 1 ,2 , . . , / i j

38

In general, the number of variables in (P4) is an exponential function of the number of variables
njj =1 ,2 , ..,p in (P3). However, if the simplex method is adapted to solve (P4), the extreme points

or the extreme rays of PjJ = 2,3,..,p and consequently the columns in (P4) can be generated, as

and when required, by solving the linear programs associated with the p subproblems. This column

generation is described next.

Given a basic feasible solution to (P4), let w and u be row vectors denoting the simplex multipliers

associated with constraints (5) and (6) respectively. For j = 2, ...,p solve the following linear

programming sub-problems:

(Sj) Zj = min(u/AJ — cJ)xJ

x* > 0

Suppose ZJ is finite. An extreme point solution xJt is then identified. If ZJ + Uj < 0, a candidate

I A'x* \
column to enter the basis is given by . On the other hand if ZJ -f Uj > 0, there is no

I 1)
extreme point of Pj that gives a column to enter the basis at this iteration. Suppose the optimal

solution to Sj is unbounded. An extreme ray yjt of Pj is then identified and a candidate column

. If the simplex method is used to solve Sj, the extreme
0 /

point or the extreme ray is identified automatically. If a column to enter the basis is identified from

any of the sub-problems, a new improved basis is obtained and the column generation procedure is

repeated. If none of the sub-problems identify a column to enter the basis, the current basic solution

to (P4) is optimal.

As in Section 9.1, a major iteration is when the sub-problems are solved. Instead of solving all

the p sub-problems at each major iteration, one option is to update the basis as soon as a column to

enter the basis has been identified in any of the sub-problems. If this option is used at each major

iteration,the sub-problems that are solved first are typically the ones that were not solved at the

previous major iteration.

The decomposition approach is particularly appealing if the sub-problems have a special structure

that can be exploited. Note that only the objective functions for the sub-problems change from one

major iteration to another. Given the current state of the art, (P4) can be solved in polynomial

time (polynomial in the problem parameters of (P3)) by the ellipsoid method but not by the simplex

method or interior point methods. However (P3) can be solved in polynomial time by interior point

methods.

39

It is interesting to note that the reverse of decomposition is also possible. In other words, suppose

we start with a statement of a problem and an associated linear programming formulation with a

large number columns (or rows in the dual). If the column generation (or row generation in the

dual) can be accomplished by solving a "compact" linear program, then a "compact" formulation

of the original problem can be obtained. Here "compact" refers to the number of rows and columns

being bounded by a polynomial function of the parameters (not the number of the columns in the

original linear programming formulation) in the statement of the original problem. This result due

to Martin [53] enables one to solve the problem in the polynomial time by solving the compact

formulation directly using interior point methods.

9.3 Compact Representation

Consider the following linear program:

(P5) min ex

Subject to Ax >b

x>0

where A is a m x n matrix; x is a n x 1 vector; c is a 1 x n vector and b is a m x 1 vector;

Pjy j = 1,2, ...,p is a polyhedron and p is bounded by a polynomial in m and n.

Without loss of generality, it is assumed that Pj,j = 1,2, ...,p is non-empty and (P5) is feasible.

Given x such that Ax > 6, the constraint identification or separation problem Sj(x) with respect to

Pj is to either (a) conclude that x € Pj, or (b)find a valid inequality D\x < d\ that is satisfied by

x € Pj but D{x > d{.

Suppose the separation problem Sj(x) can be solved by the following linear program

Sj(x) : ZJ = max (xTGj + gJ)y

Fjy < P

y>0

where

GJ is an n x k matrix; F J is a r x & matrix;

g*'is a 1 x k vector; / M s a r x 1 vector; •

y is a k x 1 vector; r and k are bounded by a polynomial in m and n; and

x 6 Pj f){x : Ax > b} if and only if Zj < h?x + kj where AJ is a 1 x n vector and kj is a scalar.

40

Now, if w* denotes the dual variables associated with the Fjy < f* constraints in 5y, it follows

from the duality theorem of linear programming that a compact representation of (P5) is given by

min ex

Subject to Ax > b

(F')Tw> - (&)Tx > (g>)T

x > 0

this approach to obtaining a compact formulation is predicated on being able to formulate

the separation problem as a compact linear program. This may not always be possible. In fact,

Yannakakis [82] shows that for a b-matching problem under a symmetry assumption, no compact

formulation is possible. This despite the fact that b-matching can be solved in polynomial time using

a polynomial-time separation oracle.

AN APPLICATION: NEURAL NET LOADING

The decision version of the Hopfield neural net loading problem (cf. [64]) is:

Given y% (i = 1,2, ...,p) where each yx is a n-dimensional training vector whose components are

(+1, —1), construct a symmetric nxn synaptic weight matrix W, such that for every n-dimensional

vector v whose components are (+1, —1), the following holds:

Ud(y\v) < k then y* = sgn{Wv) for i = 1,2,.. .,p

A feasible W would represent a Hopfield net with a radius of direct attraction of at least k around

each training vector, i.e. a robust network of associative memory. Here k is specified and d(yl,v) is

the Hamming distance between yl and v. For t = 1,2, ...,p, let vtq,q = 1,2, ...,mt be all the vectors

whose components are (+1,-1) and d(yt,vtq) < k. The Hopfield neural net loading problem is to

find a matrix W such that

n

(P6) Y,yiWiivf^ l fort=l,2,...,n; < = l ,2, .- . fp; and q = 1,2,.. . ,m t

This is a linear program with the number of inequalities equal to pn 1 which is huge. The

synaptic weights have to be symmetric, so in addition to the inequalities given above, (P6) would

include the constraints w^j = Wji for i = 1,2,..., n and j = 1,2,..., n.

41

Given the weights w~UVJu = 1,2, ...yn;v = l , 2 , . . . , n , the separation problem, 5 t t(ty) for specified

i and t, where 1 < i < n and 1 < t < p, can be formulated as follows ([12]):

Let

u,, J i if »? = -*}
t} \ 0 ifv5' = yj

Since rf(y',v'«) < A: it follows that

> 5 < k <j=l,2,..,m t

Note that for specified i, t, and q, the inequality in (JP6) is equivalent to

which reduces to
n n

Vi V Wiju-q- + /^y\y-W{j > 1

Consequently, the separation problem after dropping the superscript q is
n

Sit(w) : zn == max

Subject to £ ulj < k (7)

0 < « k < 1 j ^ l ^ , . . . ^ (8)

Note that Sa(w) is trivial to solve and always has a solution such that ul- = 0 or 1. It follows that

for given i and tyw satisfies the inequalities in (P6) corresponding to q = 1,2, .^nit if and only if
71

<

Let 0t't and /3*y, j = 1,2,..., n denote the dual variables associated with constraints (7) (8) respectively.

Now applying the compact representation result stated above, a compact formulation of the neural

net loading problem (P6) is as follows:

0it + /3ijt-2yt
iy

t
jwij > 0 i = l,2,..,n * = l,2,..,p j = l,2,..,n

n n

iv v « # ~i x / / ^ 7 ~~* x ym t i 'ID*,'* ^» ~~" 1 % "~** X »̂ • • % 71 t ——• JL« JL «• X)

f\ >^ rv * _ ^ 1 O <M • -t -^ 1 O <v%
v » £ ^ ^ i / * —— i . Zty • • « * » « • ••"•* A * ^% •••TJ

fiij > 0 i= l ,2 , . . , n ; t = l,2,..,p; j = l,2,..,n

With the symmetry condition Wij = tyjt- for i = 1,2,..., n and j = 1,2,..., n added in, we now

have a linear programming formulation of the Hopfield net loading problem which is compact in the

size of the network n x n and the size of the training set nx p.

42

10 Linear Programming: A User's Perspective

This chapter has been written for readers interested in learning about the algorithmics of linear

programming. However, for someone who is primarily a user of linear programming software there

are a few important concerns that we address briefly here.

1. THE EXPRESSION OF LINEAR PROGRAMMING MODELS. The data sources from which the

coefficients of a linear programming model are generated, may be organized in a format that is

incompatible with the linear programming software in use. Tools to facilitate this translation

have come to be known as "matrix generators" [29]. Over the years such tools have evolved

into more complete modeling languages (for example, AMPL [28], GAMS [55]).

2. THE VIEWING, REPORTING AND ANALYSIS OF RESULTS. This issue is similar to that of model

expression. The results of a linear programming problem when presented as raw numerical

output are often difficult for a user to digest. Report writers and modeling languages like the

ones mentioned above usually provide useful features for processing the output into a user

friendly form. Because of the widespread use of linear programming in decision support, user

interfaces based on spreadsheets have become popular with software vendors

3. TOOLS FOR ERROR DIAGNOSIS AND MODEL CORRECTION. Many modeling exercises using

linear programming involve a large amount of data and are prone to numerical as well as

logical errors. Some sophisticated tools [35] are now available for helping users in this regard.

4. SOFTWARE SUPPORT FOR LINEAR PROGRAMMING MODEL MANAGEMENT. Proliferation of

linear programming models can occur in practice because of several reasons. The first is

that when a model is being developed, it is likely that several versions are iterated on before

converging to a suitable model. Scenario analysis is the second type of source for model

proliferation. Finally, iterative schemes such as those based on column generation or stochastic

linear programming, may require the user to develop a large number of models. The software

support in optimization systems for helping users in all such situations have come to be known

as tools for "model management" [27,30].

5. THE CHOICE OF A LINEAR PROGRAMMING SOLUTION PROCEDURE. For linear programs with

special structure (for example, network flows [1]) it pays to use specialized versions of linear

programming algorithms. In the case of general linear optimization software, the user may be

provided a choice of a solution method from a suite of algorithms. While the right choice of an

algorithm is a difficult decision, we hope that insights gained from reading this chapter would

help the user.

11 Defining Terms

• Analytic Center: The interior point of a poly tope at which the product of the distances to

the facets is uniquely maximized.

• Column Generation: A scheme for solving linear programs with a huge number of columns.

• Compact Representation: A polynomial size linear programming representation of an opti-

mization problem.

• Decomposition: A strategy of divide and conquer applied to large scale linear programs.

• Duality The relationship between a linear program and its dual.

• Extreme Point: A corner point of a polyhedron.

• Linear Program: Optimization of a linear function subject to linear equality and inequality

constraints.

• Matrix Factorization: Representation of a matrix as a product of matrices of simple form.

• Polyhedral Cone: The set of solutions to a finite system of homogeneous linear inequalities on

real-valued variables.

• Polyhedron: The set of solutions to a finite system of linear inequalities on real-valued vari-

ables. Equivalently, the intersection of a finite number of linear half-spaces in 3Rn.

• Polytope: A bounded polyhedron.

• Relaxation: An enlargement of the feasible region of an optimization problem. Typically, the

relaxation is considerably easier to solve than the original optimization problem.

• Separation: Test if a given point belongs to a convex set and if it does not, identify a

separating hyperplane.

• Strongly Polynomial: Polynomial algorithms with the number of elementary arithmetic op-

erations bounded by a polynomial function of the dimensions of the linear program.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall, (1993).

[2] Akgul, M., Topics in Relaxation and Ellipsoidal Methods, Research notes in Mathematics,

Pitman Publishing Ltd., (1984).

44

[3] F.Alizadeh, Interior point methods in semidefinite programming with applications to combi-

natorial optimization, in SIAM Journal on Optimization, Vol. 5, No. 1, pp. 13-51, February

1995.

[4] B.I. Aspvall and Y. Shiloach, A polynomial time algorithm for solving systems of linear inequal-

ities with two variables per inequality, FOCS, (1979) pp. 205-217.

[5] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Mas-

sachusetts (1997).

[6] R.E.Bixby, Progress in Linear Programming, ORSA Journal on Computing, Vol. 6, No. 1, (1994)

15-22.

[7] R.Bland, D.Goldfarb, and M.J.Todd, The ellipsoid method: a survey, in Operations Research

29 (1981), 1039-1091.

[8] K.H. Borgwardt, The Simplex Method: A Probabilistic Analysis, Springer-Verlag, Berlin Heidel-

berg (1987).

[9] R.N. Cernikov, The Solution of Linear Programming Problems by Elimination of Unknowns,

Doklady Akademii Nauk 139 (1961) 1314-1317. [Translation in: Soviet Mathematics Doklady 2

(1961) 1099-1103.]

[10] C. Caratheodory, Uber den Variabiltatsbereich der Fourierschen Konstanten von positiven har-

monischen Funktionen, Rendiconto del Circolo Matematico di Palermo 32 (1911) 193-217.

[11] V. Chandru, Variable Elimination in Linear Constraints, The Computer Journal, 36, No. 5,

August 1993, 463-472.

[12] V. Chandru, A. Dattasharma, S.S. Keerthi, N.K. Sancheti and V. Vinay, Algorithms for the

Design of Optimal Discrete Neural Networks, in Proceedings of the Sixth ACM/SIAM Symposium

on Discrete Algorithms, SIAM Press, January 1995.

[13] V. Chandru and B.S.Kochar, A Class of Algorithms for Linear Programming, Research Memo-

randum 85-14, School of Industrial Engineering, Purdue University, November 1985.

[14] V. Chandru and B.S.Kochar, Exploiting Special Structures Using a Variant of Karmarkar's

Algorithm, Research Memorandum 86-10, School of Industrial Engineering, Purdue University,

June 1986.

[15] V. Chvatal, Linear Programming, Freeman Press, New York (1983).

45

[16] W.Cook, L.Lovasz, and P.Seymour (Editors), Combinatorial Optimization: Papers from the DI-

MACS Special Year, Series in Discrete Mathematics and Theoretical Computer Science, Volume

20, AMS, 1995.

[17] CPLEX Using the CPLEX callable Library and CPLEX mixed integer library, CPLEX Opti-

mization, Inc., 1993.

[18] G.B.Dantzig, Maximization of a linear function of variables subject to linear inequalities, in

Activity Analysis of Production and Allocation, edited by C.Koopmans, Wiley, New York (1951),

339-347.

[19] G.B.Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton

(1963).

[20] G.B.Dantzig and P.Wolfe, The decomposition algorithm for linear programming, Econometrica,

bf 29, (1961), 767-778.

[21] M.E. Dyer, Linear time algorithms for two- and three-variable linear programs, SIAM Journal

on Computing 13 (1984) 31-45.

[22] M.E. Dyer, A parallel algorithm for linear programming in fixed dimension, Proceedings of the

11th Annual ACM Symposium on Computational Geometry, ACM Press (1995) pp. 345-349.

[23] Ecker, J.G. and M.Kupferschmid, tt An Ellipsoid Algorithm for Nonlinear Programming", Math-

ematical programming, 27 (1983).

[24] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

[25] J. Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-

tures and their Applications, edited by R. Guy et al., Gordon Breach, (1970) 69-87.

[26] Gy. Farkas, A Fourier-fele mechanikai elv alkalmazasai, (in Hungarian), Mathematikai es

Termeszettudomdnyi Ertesito 12 (1894) 457-472.

[27] R.Fourer, Software for Optimization: A Buyer's Guide (Parts I and II), in INFORMS Computer

Science Technical Section Newsletter, Volume 17, Number 1/2, (1996).

[28] RJFourer, D.M.Gay, and B.W.Kernighian, AMPL: A Modeling Language for Mathematical Pro-

gramming, Scientific Press, 1993.

[29] L.B.J. Fourier, reported in : Analyse des travaux de PAcademie Royale des Sciences, pendant

Pannee 1824, Partie mathematique, Histoire de VAcademie Royale des Sciences de I'Institut de

46

France 7(1827) xivii-lv. (Partial English Translation in: D.A. Kohler, Translation of a Report

by Fourier on his Work on Linear Inequalities, Opsearch 10 (1973) 38-42).

[30] A.M. Geoffrion, An Introduction to Structured Modeling, Management Science 33 (1987) 547-

588.

[31] P.Gilmore and R.E.Gomory, A linear programming approach to the cutting stock problem, Part

I, Operations Research, 9, 849-854; Part II, Operations Research, 11 , 1963, 863-887.

[32] M.X.Goemans and D.P.Williamson, .878 approximation algorithms MAX CUT and MAX 2SAT,

in Proceedings of ACM STOC, 1994, pp. 422-431..

[33] M.Grotschel, L.Lovasz and A.Schrijver,uThe ellipsoid method and its consequences in Combi-

natorial optimization", Combinatorica, 1, (1982) 169-197.

[34] M.Grotschel, L.Lovasz, and A.Schrijver, Geometric Algorithms and Combinatorial Optimization,

Springer- Verlag, 1988.

[35] H.J. Greenberg, A computer-assisted analysis system for mathematical programming models and

solutions: A user's guide for ANALYZE, Kluwer Academic Publishers, Boston (1993).

[36] G.H. Golub and C.F. van Loan, Matrix Computations, The Johns Hopkins University Press

(1983).

[37] Hacijafn, L.G., "A Polynomial Algorithm in Linear Programming", Soviet Math. DokL, 20,

(1979) 191-194.

[38] M. Haimovich, The simplex method is very good! On the expected number of pivot steps and

related properties of random linear programs, Unpublished Manuscript, (1983).

[39] D. Hochbaum and Joseph Naor, Simple and fast algorithms for linear and integer programs

with two variables per inequality, Proceedings of the Symposium on Discrete Algorithms (SODA)

(1992) SIAM Press (also in the Proceedings of the Second Conference on Integer Programming

and Combinatorial Optimization IPCO, Pittsburgh, June 1992)

[40] T. Huynh, C. Lassez and J-L. Lassez, Practical Issues on the Projection of Polyhedral Sets,

Annals of Mathematics and Artificial Intelligence 6 (1992) 295-316.

[41] IBM, Optimization Subroutine Library - Guide and Reference (Release 2), Third Edition, 1991.

[42] A. Itai, Two-Commodity Flow, Journal of the ACM 25 (1978) 596-611.

[43] G. Kalai and D.J. Kleitman, A quasi-polynomial bound for the diameter of graphs of polyhedra,

Bulletin of the American Mathematical Society, 26 (1992) 315-316.

[44] L.V. Kantorovich, Mathematical methods of organizing and planning production, (in Russian),

Publication House of the Leningrad State University, Leningrad (1939); English translation in

Management Science 6 (1959) 366-422.

[45] A. Kamath and N.K. Karmarkar, A continuous method for computing bounds in integer

quadratic optimization problems, Journal of Global Optimization, 2, 229-241 (1992).

[46] Karmarkar, N. K., A New Polynomial-Time Algorithm for Linear Programming, Combinatorica,

4, (1984) 373-395.

[47] R.M. Karp and C.H. Papadimitriou, On Linear Characterizations of Combinatorial Optimization

Problems, SIAM Journal on Computing, 11 (1982), 620-632.

[48] V. Klee and G.J. Minty, How good is the simplex algorithm?, in Inequalities III, edited by O.

Shisha, Academic Press (1972).

[49] J.K. Lenstra, A.H.G. Rinooy Kan and A. Schrijver (editors), History of Mathematical Program-

ming: A Collection of Personal Reminiscences, North Holland (1991).

[50] L.Lovasz, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM Press, 1986.

[51] L.Lovasz and A.Schrijver, Cones of matrices and setfunctions, SIAM Journal on Optimization

1, (1991), pp. 166-190.

[52] I.J.Lustig, R.E.Marsten, and D.F.Shanno, Interior Point Methods for Linear Programming:

Computational State of the Art, ORSA J. on Computing, Vol. 6, No. 1, (1994) 1-14.

[53] R.K.Martin, Using separation algorithms to generate mixed integer model reformulations, Op-

erations Research Letters, 10, (1991) 119-128.

[54] J. Matousek, M. Sharir and E. Welzl, A subexponential bound for linear programming, in Pro-

ceedings of the 8th Annual ACM Symposium on Computational Geometry, ACM Press, (1992)

pp. 1-8.

[55] J. Bisschop and A. Meerhaus, On the development of a General Algebraic Modeling System

(GAMS) in a Strategic Planning Environment, Mathematical Programming Study 20 (1982)

1-29.

[56] N.Megiddo, On finding primal- and dual-optimal bases, in ORSA Journal on Computing 3, pp.

63-65.

48

[57] N.Megiddo, Towards a genuinely polynomial algorithm for linear programming, SIAM Journal

on Computing, 12 (1983) 347-353.

[58] N.Megiddo, Linear Programming in linear time when the dimension is fixed, JACMZ1 (1984)

114-127.

[59] S.Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on

Optimization, 2:4, 1992, pp. 575-601.

[60] R. Motwani and P.Raghavan, Randomized Algorithms, Cambridge University Press (1996).

[61] B.A. Murtagh, Advanced Linear Programming: Computation and Practice McGraw Hill, New

York, 1981.

[62] K.G. Murty, Linear Programming, Wiley, New York, 1983.

[63] C.G. Nelson, An O(n l o8n) algorithm for the two-variable-per-constraint linear programming sat-

isfiablity problem, Technical Report AIM-319, Dept. of Computer Science, Stanford University

(1978).

[64] Orponen, P., "Neural Networks and Complexity Theory", in Proceedings of the VIth Interna-

tional Symposium on Mathematical Foundations of Computer Science (ed. I.M. Havel and V.

Koubek) Lecture Notes in Computer Science 629, Springer-Verlag 1992, pp. 50-61.

[65] M.W.Padberg, Linear Optimization and Extensions, Springer-Verlag, 1995.

[66] M.W.Padberg and M.R.Rao, The Russian method for linear inequalities, Part III, Bounded

integer programming, Preprint, New York University, (19S1).

[67] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall (1982).

[68] C.H.Papadimitriou and M.Yannakakis, Optimization, approximation, and complexity classes,

in Journal of Computer and Systems Sciences 43, 1991, pp. 425-440.

[69] R. Saigal, Linear Programming: A Modern Integrated Analysis, Kluwer Press, 1995.

[70] M.J. Saltzman, Implementation of an interior point LP algorithm on a shared-memory vector

multiprocessor, in Computer Science and Operations Research, edited by O.Balci, R.Sharda and

S.A.Zenios, Pergamon Press, 1992, pp. 87-104.

[71] A.Schrijver, Theory of Linear and Integer Programming, John Wiley, 1986.

[72] S. Sen, Parallel multidimensional search using approximation algorithms: with applications to

linear-programming and related problems, Proceedings of SPAA, (1996).

[73] R. Sharda, Linear Programming Solver Software for Personal Computers: 1995 Report, OR/MS

Today 22:5 (1995) 49-57.

[74] D.B.Shmoys, Computing near-optimal solutions to combinatorial optimization problems, in [16]

cited above, (1995) 355-398.

[75] Shor, N.Z., "Convergence Rate of the Gradient Descent Method with Dilation of the Space",

Cybernetics, 6, (1970).

[76] M. Sharir and E. Welzl, A combinatorial bound for linear programming and related problems,

in Proceedings of the 9th Symposum on Theoretical Aspects of Computer Science, LNCS 577,

Springer Verlag (1992) 569-579.

[77] R.E. Stone and C.A. Tovey, The simplex and projective scaling as iterated reweighting least

squares, SIAM Review 33 (1991) 220-237.

[78] E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Operations

Research, 34, 250-256 (1986).

[79] M.J. Todd, Exploiting special structure in Karmarkar's Algorithm for Linear Programming,

Technical Report 707, School of Operations Research and Industrial Engineering, Cornell Uni-

versity, July 1986.

[80] H.Weyl, Elemetere Theorie der konvexen polyerer, Comm. Math. Helv., Vol. I, (1935) 3-18,

(English translation in Annals of Mathematics Studies, 24, Princeton, 1950).

[81] S.J.Wright, Primal-Dual Interior-Point Methods, SIAM Press, 1997.

[82] M.Yannakakis, Expressing Combinatorial optimization problems by linear programs, in Proceed-

ings of ACM Symposium of Theory of Computing, (1988) 223-228.

[83] G.M.Ziegler, Lectures on Polytopes, Springer Verlag, 1995.

12 Other Sources

JOURNALS:

Research publications in linear programming are dispersed over a large range of journals. The

following is a partial list which emphasize the algorithmic aspects.

50

Mathematical Programming

Mathematics of Operations Research

Operations Research

INFORMS Journal on Computing

Operations Research Letters

SIAM Journal on Optimization

SIAM Journal on Computing

SIAM Journal on Discrete Mathematics

Algorithmica

Combinatorica

Linear programming professionals frequently use the following newsletters:

• INFORMS Today (earlier OR/MS Today) published by The Institute for Operations Research

and Management Science.

• INFORMS CSTS Newsletter published by the INFORMS computer science technical section.

• Optima published by the Mathematical Programming Society.

WWW:

The linear programming FAQ (frequently asked questions) facility is maintained at

http://www.mcs.anl.gov/home/otc/Guide/faq/

To have a linear program solved over the internet check the following locations.

http://www.mcs.anl.gov/home/otc/Server/

http://www.mcs.anl.gov/home/otc/Server/lp/

The universal input standard for linear programs is the MPS format [61].

51

