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ABSTRACT

The Vehicle Routing Problem (VRP) is concerned with

finding efficient routes for a fleet of vehicles/buses to pick

up employees from pre—determined bus stops and bring them to

the work place. We believe that the VRP will increase in

importance as the fuel prices rise and as the extent to which

an organization will subsidize the transportation decreases in

the face of increased competition as a result of

liberalization- In this paper, two heuristics, both based on

iterative improvement of an initial solution, have been

developed. One of the routines has been developed using

Simulated Annealing. We compare these routines with some

existing routines and the results are favourable.

1. Introduction

In India, it is a well known fact that the public

transport system is not adequate to meet the demands of the

commuters. This usually results in overcrowding of transport

vehicles/buses and has an effect on the work efficiency of the

workers who depend on the public road transport to commute to

their places of work. In view of this, many organizations,

both public and private, encourage their work force to use some

comfortable private transport services and reimburse their

travel expenses- Some organizations provide some alternative

modes of transport exclusively for their employees; either they

engage a transport contractor or maintain a fleet of buses for

this purpose- Serious thought must be given to the economical

operation of the fleet especially when the employees have to be

picked up and dropped at scattered locations far away from the



place of work. The Vehicle Routing Problem (VRP) will increase

in importance as the petroleum prices rise and the extent

to which an organization is willing to subsidize the

transportation decreases- (It may also be noted that a study

([43) computed the annual distribution costs in USA to be at

approximately 21/1 of the GNP. ) Hence an efficient scheduling

and routing of buses (which includes an optimum fleet size) is

important.

It has been shown in [73 that the VRP is an NP-complete

problem. Therefore researchers have developed heuristics to

arrive at schedules which will (locally) minimize the total

cost under different constraints.

In this paper we assume that the buses have to start from

the work place (depot) to pick up employees from pre-assigned

points and bring them to the work place. (Similarily, at the

end of the shift, the buses leave the depot, to drop the

employees at the points from where they were picked up, and

return to the depot.) Simulated Annealing method ([9]), goal

programming and heuristics Ar& used to obtain near optimal

solutions. The results are compared with Single Point Exchange

([13), and Two Optimality ([83, [113) heuristics using the data

(obtained from [13) for a large public sector company located

in Bangalore.

2. Notations

We assume that each bus starts from the work place (bus

stop 1) and completes the route by returmnq to the work place.

A bus is said to "visit" one stop if it picks up/drops

passengers at that stop. A bus visiting a stop immediately



after visiting another stop may have to go via some other stop

(if it lies on the minimum cost path). We wish to avoid having

variables which keep track of whether a bus visits a stop or

merely crosses that stop. Therefore we assume that every pair

of stops is connected by a (artificial) road that does not

include any other stop and we set the cost of plying on this

road equal to the minimum cost on the actual network.

N = Number of pick up/drop points. The pick up/drop points

are numbered 1 through N with 1 being the work place.

M = Available number of buses.

S = tl, 2, ..-, N>

Q = capacity of the kth bus, k e B

q. = Number of passengers (to be picked up or dropped) at

bus stop i, i € S-{1>. We assume that q - G** k e B.

c. . = Cost associated with the movement of a bus from stop i

to stop j, i and j e S. (The cost may be in term« of distance

or time or any other relevant cost. This is assumed to be

independent of the capacity of the bus.)

D = Upper limit on the total cost of any subrotite.

For ip j € S, and k e B, let:

{1, if bus k visits stop j from stop i

0, otherwise

{1, if bus k visits stop i

0, otherwise

if bus k picks up at least one passenger
i

r r otherwise



3. Linear Formulation of the basic VRP

Here we consider two objective functions which are to be

minimi zed. The first objective minimizes the number of buses.

The second minimizes the total cost- For other formulations,

refer [6j. Explanation of the constraints (also refer [2])

given at the end of the formulation.

Minimize f F r, , r c E x , J"
*- k ** Li *•" ijk
k i . ) ' k

Subject to:

1, if i e S/{i}{ Er., m - i »

Z q v., - Q , • x e S - [ i ] and k <= B 2

T e x < D, i , j €= 3 and k e B . 3

i . j i j ^

r ^ E v < N . r , i e S and k e B 4
k ^ ' tk k

E > : j , X = ^ X , i k
= : y , ) c f o r i , j e S . k e B 5

,i i "

T x . = 1 , for i . j e S, k e B 6
7̂  k

Remarks on the constraints

1. D&pot (stop 1) is visit&d by every bus. Other stops are

visited by exactly one bus to pick up passengers,

2. The Capacity of the kth bus is Q * k <= B.

3- The running cost of each bus is less than a pre—assigned D,

4. ft bus is util ized if and only if it travels to at least

one stop to pick up or drop passengers.

5. If a bus visits a stop, it must &lso exit the stop-

hm Every stop is visited by exact ly one bus which does so

immed iately after vis it ing some other stop*
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4. Goal Programming Technique

We apply the technique in the following manner:

The number of available buses is initially set to k = 1. If a

feasible solution is found for k buses, we then optimize the

second objective by any one of the heuristics given below.

This will be the solution to the VRP- If we cannot find a

feasible solution for k = M, then the problem is considered to

be not solvable.

5. Heuristics to Ninimize the Second Objective

A typical procedure to solve the VRP (for a given number

of buses) uses the cluster-first/route—second approach ([33).

The Sweep heuristic is applied to obtain a feasible solution,

and then "improvement" heuristics stre run to minimize the

costs.

Below we briefly describe the Sweep heuristic and three

"improvement" heuristics. There Are a number of variants in

the first two "improvement" heuristics and we have presented

one for each. These were the ones we have programmed. The

third "improvement" heuristic, developed by us, is a

combination of the first two "improvement" heuristics. All

these "improvement" heuristics converge to a local minimum.

Later we present another "improvement/1 heuristic based on

Simulated Annealing which converges to a global minimum.

For easier explanation of the heuristics, we need the

following concept. We r&q&rd each subroute as a sequence of

stops (visited by the bus assigned to this subroute) which

starts from the depot and ends at the depot; the order in the

sequence is the order in which the stops &rtB visited by the bus



(starting from bus stop 1). A subset of stops in a subroute

can be ordered (as above) to form a subsequence of this

subroute.

(H8) The Sweep Heuristic: (Ell, [3]): Polar coordinates are

computed for all the stops. The nodes are then swept' into

clusters from the smallest angle to the largest. Each cluster

contains a set of nodes which satisfy the constraints. The

procedure is as follows.

Step 1. Reorder the stops with polar coordinates (r , B ) such

that 6 < ...< 6 .
2 N

Step 2. Choose an unused bus k (k e B).

Step 3. Starting from an unrouted stop i with the smallest

angle, include consecutive stops in the route until the

inclusion of the next stop would violate the capacity

constraint. Insert stop 1 at the beginning and at the end of

the route.

4. If all the stops have been "swept", stop- Else return to

Step 2.

(Our computer program for (H0) has been coded exactly as

above. )

(HI) Two Optimality Heuristic (£8], [113): This heuristic

involves cutting and rejoining links which connect stops in a

subroute; this essentially permutes t?he stops in a subroute.

Let a and b, and u and v be pairs of adjacent stops in

the present configuration of a subroute with {a, b, u9 v> being

the subsequence of the subroute. The links ab and uv are

deleted and the links au and bv are inserted. This forces {a,

ur b, v~; to be the subsequence of the subroute- The cost of

the new configuration is computed to see whether to replace the



previous configuration with the new one.

Subroutes Are considered one at a time. The pairs of

links Ar& selected by some user—defined rule. If there is an

improvement, the old subroute is replaced by the new

permutation. This procedure is repeated until there is no

improvement.

(We programmed an iteration of this heuristic in the

following way. Two nodes were selected from the subroute under

consideration. Considering the subroute as a sequence, the

links which had these nodes as the end nodes were then replaced

by the appropriate links as required above.)

(H2) Single Point exchange Heuristic ([13): Pairs of stops, say

u and v, with the stops being in different subroutes, say SRI

and SR2, are selected by some user—defined rule. In SRI u is

replaced by v9 and in SR2 v is replaced by u. If the exchange

is an improvement, then it is taken as a permanent exchange.

This process is repeated until there is no further improvement.

(We programmed an iteration of (H2) just as described

above.)

(H3) 2—Opt/One—Point—exchange Heuri&ticz We randomly generate

pairs of stops. If the stops are in the same subroute, then

the permutation of (HI) is affected; otherwise the exchange of

(H2) is affected. If the exchange is Bn improvement, then it

is taken as the new configuration. This process is repeated

until there is no further improvement.

(In our computer code, the pair of stops was generated by

the random number generator of the computing system. The rest

of the code is just as described in the procedure.)



6. Simulated Annealing with reference to VRP

We briefly describe the method of Simulated Annealing

with respect to VRP. References [5] and [93 have the general

theory- This will converge to a global minimum but the time to

termination is not polynomially bounded; therefore for

practical solutions, the maximum number of iterations is fixed.

For some years, interest has been shown in the use of

simulated annealing to obtain "good" solutions to a number of

combinatorial problems- The central idea of this method is

that certain uphill steps may be required to prevent an

optimization scheme from being stuck in a "poor" local minimum.

In general, improvements are always accepted while uphill moves

are accepted with a probability that depends on the size of the

increment and a number of controlling parameters. For a

particular problem, one must specify a topology (refer [18])

and a method of moving from one feasible solution to a

(topologically) neighbouring one.

Let k be the number of buses that have to be run (refer

Section 4). Let X be the set of all feasible solutions of the

VRP with the following properties:

1. The number of subroutes in each solution equals k.

2. For any two solutions: for each subroute in one solution,

there is a subroute in the other solution with the same number

of stops.

(These conditions may appear stringent, but any series of

solutions generated by first applying the Sweep Heuristic

followed by iterations of any of the improvement f heuristics

described above has these properties.)

If f: X -> K denotes the second objective function, then



the problem is to minimize f. Let -T be any topology on V with

the following essential condition:

Given any two points, x® and x in X, we can construct a

sequence x0, xl, x2, « ... , x, where any two adjacent points in

the sequence ^re neighbours in the topoloqical sense.

Let Jf be the maximum number of iterations- Let t ^nd t
o i

be pre- determined control parameters and let Jt= (t - t ) / (J( t

t * t ) . Let s be any initial solution- At the ith step,

let s be the current solution, let t be the corresponding
i ' i

control parameter* and let f = f(s ). The heuristic may be
i i

stated as follows.

Repeat until t < t

1. Generate a neighbour s of the current solution. If f is
P P

an improvement or if exp((f -f )/c ) > 0.5,
i p i

s ' = s else s = s. .
i+i p i+i t

2. t = t - dt , where dt = t / ( l - * - , £ * t ) .
t + l i i" it i

The sequence of Solutions is generated by a Markov

process with a transition matrix that is irreducible. If, in

an iteration, the probability of every neighbour being chosen

as a candidate is the same, then it can be shown that the

method can be made to terminate arbitrarily close to the global

optimum with probability arbitrarily c i o s e ^o ±m

Unfortunately, the time to termination is not polynomially

bounded,

7. A Heuristic based on Simulated Annealing

As noted in the previous section, to apply Simulated

Annealing, we need to define a topology on X (the solution

space as defined earlier), a method to generate a neighbour of

any point in X and a method to generate the initial solution.

9



We define a topology on X as follows. Two points in X

said to be neighbours if one can be generated from the

other by either (I) permuting stops in some subroute of one as

in (Hi) or (2) by the single point exchange (as in (H2)). It

can be verified that this topology has the essential condition

mentioned in Section 6.

Therefore we generate a neighbour of a feasible solution

by the method stated above, and an initial solution is

generated by the Sweep Heuristic.

(H4) 2.—Gpt/Gne—P<3int—exchang&with Simulated Ann&al ingz

t Let K (i < K < M) be the maximum number of possible routes.

(Refer Section 4.)

*. Let Jf', t and t be fixed. Calculate S.o f

% Generate the initial solution, s by the sweep heuristic.
o

* Let s be an intermediate solution, t be the corresponding

control parameter and let f = f(s ).
i i

* To perturb s , we randomly select two stops; if the stops are
in different subroutes, they aLre exchanged as in (H2), else

they BrG exchanged as in (HI). Denote this neighbour by s .
P

t If f = f(s ) is an improvement or if exp((f -f )/c ) > 0.5,
p p i- p t

s = 5 else s = s .
itl p i+i i

* t = t - dt. , where dt = t /(i + & * t ).
L + i i L' ii i»

The last three steps are iterated Jf times.

(As in (H3), our code use the random generator of the

computing system to generate the pair of nodes- We then

followed the procedure detailed above.)

Since every neighbour has equal chances of being

selected- this method can be made to terminate arbitrarily

close to the global optimum.
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8. Experiment and Results

The VRP of a public sector company has been modelled for

solution. The data were obtained from [13. The number of

stops is 327 with the first stop as the factory; the number of

available huses was 30 and the capacity of each bus was taken

to be 55. The coordinates of each stop were available and we

defined the cost of going from one stop to another to be the

Euclidean distance between the two.

We wished to compare the four heuristics (Hi), (H2), (H3)

and (H4). We kept the number of buses that had to be run fixed

at 28 for all four heuristics.

In any iteration of any of these heuristics, a pair of

stops has to be selected. Since, for (H3) and (H4)« the next

pair of stops needs to be chosen randomly, we decided to do the

same with the other heuristics. We used the random number

generator of the computing system to generate the same sequence

of pairs of nodes for each heuristic. We generated three

sequences of random pairs using the seeds 136, 188 and 1122.

Since we cannot predict when a heuristic will converge to

a local or global optimum, we decided to compare the solutions

reached by the various heuristics at different stages of the

computations. The stages were defined by the expression

C*factor, where C is the total number of possible pairs that

could be selected (for the particular heuristic) in an

iteration, and factor was assigned pre-determined numerical

values. The solutions were examined when all the heuristics

had completed Ctfactor iterations (for different values of

factor). Thus the number of iterations executed at the end of

any stage was:

11



(Hi): (n-l)*(n-2)/2*factor (for each subroute), where n is the

number of stops in that subroute;

(H2): (N-i)*(N-2)/2*factor;

(H3): (N-l)*(N-2)/2*factor;

(H4)z (N-l)*(N-2)/2*factor.

Although we did not keep track of the time taken by each

heuristic, it is clear that the time taken for a particular

heuristic is (almost) proprtional to the total number of

iterations executed- This implies that the time taken for (HI)

is significantly lower than the others. In (H2), if the stops

generated are from the subroute then it is ignored and the

count (of the number of iterations) is increased by one; but in

(H3) this pair will be considered- Therefore (H3) will take

p>ore time than (H2). (H4) will take longer than (H3) since

configurations that are rejected by (H3) may be accepted by

(H4) if the increment is small enough. But the difference in

the times will not be significantly different.

The code was written in C and the program was run on the

VAX 330®.

The value of the second objective function after the

execution of the Sweep heuristic was 4888.2 Km- This is the

value of the initial solution for all the heuristics. Table 1

below contains the computational results- The data in the last

four columns are the values of the second objective function

for the corresponding heuristics at different stages of the

computation (given by the first column) and for different

sequences of random pairs generated by the seeds shown in the

second column-
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TABLE 1

Factor

1

1

1

4

4

4

6

6

6

10

10

10

14

14

14

16

16

16

20

20

20

22

22

22

28

28

28

30

30

30

Seed

136

188

1122

136

188

1122

136

188

1122

136

188

1122

136

188

1122

136

188

1122

136

188

1122

136

188

1122

136

188

1122

136

188

1122

HI

3237-6

3282.4

3202.2

3036.4

3038.0

3036.3

3035.5

3038.0

3036.2

3035.2

3038.0

3036.1

3035.0

3038.0

3036.1

3035.0

3038.0

3036.1

3035.0

3038.0

3036.1

3035.0

3038.0

3036.1

3035.0

3038.0

3036.1

3035.0

3038.0

3036.1

H2

3067.0

3019.9

3250.5

2840.4

2698.9

2961.4

2839.1

2651.2

2929.9

2836.3

2650.8

2885.3

2836.3

2650.8

2882.0

2836.3

2650.8

2882.0

2836.3

2650.8

2882.0

2836.3

2650.8

2882.0

2836-3

2650.8

2882.0

2836.3

2650.8

2882.2

H3

2828.9

2789.6

2737.4

2613.2

2554.3

2560.3

2611.1

2528.9

2545.7

2611.1

2525.8

2545.7

2611.1

2525.8

2545.7

2611.1

2525.8

2545.7

2611.1

2525.8

2545.7

2611.1

2525.8

2545.7

2611.1

2525.8

2545.7

2611.1

2525.8

2545.7

H4

3356.4

3072.9

3330.7

2745.6

2787.3

2986.9

2787.6

2827.8

2609.9

2576.5

2559.4

2558.8

2466-9

2460.4

2532.9

2402.9

2432.6

2419.0

2426.5

2351.9

2445.4

2372.3

2439.3

2390.3

2335.5

2396.0

2358.9

2349.2

2401.0

2323.3
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10. Conclusions

The investigations are at a preliminary stage. The

heuristics must be run on more test data before firmer

conclusions can be drawn. At this present juncture, we may say

the following:

1. As far as convergence is concerned, H3 converges the

fastest, followed by HI and H2- From the last column of Table

1, it can be seen that H4 had not converged. If an

organization has to compute the routes on a daily basis, then

H3 appears to be more appropriate.

2. Although H4 did not converge, it gives better results if

enough iterations BtrG executed. Therefore, if the computations

Are to be done for a schedule which will not be changed

frequently, H4 gives a better result.
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