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With supply chains evolving into complex networks of diverse and independent economic entities, supply

chain coordination has emerged as a key management capability for improving overall performance of the

network. For long term sustainability, it is important that such networks remain stable with little incentive

for players to sever their linkages, especially in supply chains with participative constraints on their members.

While topic of coordination has received vast attention from both academia and practitioners, the issues

related to network stability have not been addressed adequately. In order to bridge this gap in the literature,

we focus on a two tier supply chain network competing with independent producers. The network involves a

marketing agent that coordinates activities among the network producers via a price and profit sharing based

coordination mechanism. We develop a (noncooperative) game theoretic model and analyze the impact of the

coordination mechanism on stability of the network. In particular, we focus on three factors: cost parameters,

number of producers vis-à-vis level of competition, and profit sharing. We derive response functions for the

players involved and show that optimal decisions by coordination leads to Nash equilibrium for the supply

chain. In addition, we develop structural results to characterize stability of the network. Our results show

that while profit sharing parameter of the coordination mechanism has no impact on network surplus, it has

implications for network stability. These results bring out relationship between the factors of interest and

provide insights for determining the decision parameters of the coordination mechanism.
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1. Introduction

During the past two decades, supply chains have evolved into complex networks involving diverse

players, each with its own rights and individual interests. In this environment, supply chain coordi-

nation with a focus on mechanisms to align decisions of members has emerged as a key management

capability for improving the overall effectiveness of the network (see Cachon 2003, Chen 2003, Li

and Wang 2007). For long term sustainability, it is important that such networks remain stable

with little incentive for players to sever their linkages. The issue is particularly important in net-

works with exclusivity contracts that restrict players from participating simultaneously in supply

chains of similar or competing products. Franchises, exclusive dealerships, captive facilities (such

as manufacturing plants, distribution units, etc.) and cooperatives are typical examples of supply
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chain networks that exhibit some of these features. The presence of competing supply chains often

provides players in the network with alternate avenues that may undermine the stability of the

network. While coordination issues have received much attention in supply chain management lit-

erature (see Whang 1995, Tsay et al. 1998, Cattani et al. 2003, Kouvelis et al. 2006), issues related

to stability have not been studied in detail. In this paper we aim to bridge this gap and develop

a modeling approach to study network stability issues and examine the impact of coordination

mechanisms on stability of supply chain networks.

The motivation for our work comes from mixed results in the cooperative sector of India. Over

the last six decades, AMUL, a milk producers’ cooperative, has a led dairy revolution in India

that has resulted in India becoming one of the largest producers of milk in the world (Bellur

et al. 1990). The success of AMUL is achieved within the framework of a network of cooperatives

organized in a hierarchical manner. The network structure has been subsequently replicated in

various other sectors - such as oil, sugar, wheat, fertilizer, etc. However, similar success has eluded

many of these cooperatives, and in some cases the networks have disintegrated (Bandyopadhyay

1996, Das et al. 2006). Recently, the AMUL network has come under strain with competition from

private players, and consequently, alternate avenues - such as changing supply chain alliances,

severing linkages with the existing network, establishing independent production units, etc. - have

evolved for the players in the network (Chandra and Tirupati 2003). Similar competitive setting

can be observed in network structures such as Independent Grocers Association (IGA) - a group of

independent retailers (www.iga.com), Unified Western Grocers Inc. - a purchasing cooperative of

independent grocers (www.unifiedgrocers.com), and European Social Franchising Network, CAP

Market in Germany - cooperatives of sheltered workshops (www.socialfranchising.coop, www.cap-

markt.de).

Specifically, in this paper we examine stability issues in a two-tier supply chain network compris-

ing of several producers operating in a competitive market. While some of the producers operate

independently and offer their product in the market directly, the rest form a cooperative network

(hereafter referred to as network) and supply through a marketing agent that acts as a coordinator.

Production decisions by the network producers are influenced by the coordination mechanism used

for sharing the revenues generated. In this paper we analyze a profit sharing based mechanism that

is popular both in practice (see Azfar and Danninger 2001, Heywood and Jirjahn 2009) and the lit-

erature (see Chen et al. 2001, Foros et al. 2009). The coordination mechanism involves procurement

price paid by marketing agent to the network producers and surplus sharing. We develop a game

theoretic model to describe the problem context and characterize the decisions of both network and
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independent producers. Our development involves integration of (i) principles of coordination from

supply chain management literature, and (ii) literature in economics and industrial organization

on network stability. We derive response functions for the players involved and show that optimal

decisions by coordination leads to Nash equilibrium for the supply chain. For instance, we show

that there exists a range of procurement price in which both network and independent producers

compete together. For procurement price below a threshold value, the network producers do not

compete. Similarly, for procurement price beyond a threshold, the independent producers do not

compete. In addition, we develop structural results to characterize stability of the network. Our

results show that while profit sharing parameter of the coordination mechanism has no impact

on network surplus, it has implications for network stability. These results bring out relationship

between the factors of interest and provide insights for determining the decision parameters of the

coordination mechanism.

The remainder of the paper is organized as follows. In Section 2, we review the relevant literature

and position the work described in this paper. The problem context and model development are

described in Section 3. Section 4 covers model analysis. Section 5 discusses network stability. We

mention the key findings and conclude the paper in Section 6.

2. Literature Review

As mentioned earlier, the literature related to the problem considered in this paper comes from

two streams: (i) operations and supply chain management, in particular on coordination, and

(ii) network formation and stability in economics and industrial organization. In what follows we

present a brief overview of the literature and relate it to the issues addressed by our work in the

paper.

2.1. Supply Chain Coordination

In the past two decades, coordination has emerged as a new paradigm for managing and improving

significantly performance of supply chains and has attracted growing attention from both academia

and practitioners. The literature on the subject is quite extensive with multiple perspectives to

examine a wide range of issues employing diverse methodologies. As a result, depending on the

context, the term coordination has been interpreted in different ways and several alternative defi-

nitions have been offered. For example, Malone and Crowston (1990, 1994) define coordination as

“the act of managing interdependencies between activities performed to achieve a common goal”.

Similarly, Lambert et al. (1998) define coordination as a process of planning, executing and control-

ling the interdependencies of activities carried out by different supply chain members or business
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units in order to create value for the end customer. According to Desai et al. (2004), supply chain

coordination involves mitigating channel inefficiencies of decentralized system and achieving the

same profit as a centralized system.

The literature on supply chain coordination may be broadly classified into the following categories

based on methodology/approach:

(i) Empirical studies that focus on assessing extent of coordination in supply chain and its impact

on performance.

Such studies typically identify the adverse impact of lack of coordination on performance and

benefits of coordination and focus on identifying factors that facilitate coordination. Examples of

such studies can be found in Stank et al. (1999), Stock et al. (2000), Kulp et al. (2004), Peterson

et al. (2005). In the food and consumer packaged goods industry, Kulp et al. (2004) observe that

various integration techniques are directly and positively associated with performance measures.

Peterson et al. (2005) show that coordinating supplier capabilities in product design process results

in improved financial performance.

(ii) Studies using approaches for social systems/organizational settings with focus on inter-

organization and inter-functional issues based on trust and social mechanisms. For instance, Jones

et al. (1997) observe that macro-culture (common values, norms, beliefs, etc.) facilitates efficient

exchange among the parties and reduces coordination costs by increasing the ease of exchanging

customized goods or services among autonomous parties. Handfield and Bechtel (2002) note that

buyer-dependence, supplier human asset investments, and trust are all positively associated with

improved supply chain responsiveness.

(iii) Modeling approaches with focus on decision making in supply chains.

The literature in this area deals with issues related to coordinated planning for optimizing inte-

grated supply chain (see Thomas and Griffin 1996, Swaminathan and Tayur 2003, Li and Wang

2007), coordination contracts for decentralized systems (see Tsay et al. 1998, Cachon 2003), infor-

mation sharing among the players (see Chen 2003, Huang et al. 2003), etc.

The literature on supply chain coordination is clearly quite vast and a comprehensive review is

beyond the scope of this paper. Instead, we provide a brief overview of literature related to design

and analysis of coordination mechanisms in supply chains that is perhaps most relevant to the work

presented in this paper. The focus of research in this body of literature is on decentralized supply

chains with decision rights for individual entities. Typically, two players are considered at a time

(manufacturer-retailer, supplier-manufacturer, etc.) and contractual terms define the coordination

mechanism. Integrated supply chain with optimal decision for the entire system is considered as the
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benchmark and the objective is to analyze and characterize performance of the entire system with

reference to this benchmark. In this context, according to Cachon and Kok (2010), a supply chain is

coordinated if the combined profit of the supply chain members is maximized under decentralized

decision making. Similarly, a contract is said to coordinate the supply chain if the set of supply

chain optimal actions is a Nash equilibrium, i.e., no firm has a profitable unilateral deviation from

the set of supply chain optimal actions (Cachon 2003).

The coordinating contracts documented in the supply chain literature are numerous. Review

of this literature can be found in Tsay et al. (1998) and Cachon (2003). The contracts that are

primarily studied under a variety of supply chain environment are: revenue-sharing (Mortimer 2002,

Cachon and Lariviere 2005), whole-sale price (Bernstein et al. 2006), mix of both revenue-sharing

and whole-sale price (Pasternack 2002), quantity flexibility (Tsay 1999), buy-back (Pasternack

1985), sales-rebate (Taylor 2002), price-discount (Bernstein and Federgruen 2005), two-part tariff

(Raju and Zhang 2005), contracts with options (Schuster et al. 2002), etc. These studies discuss

flexibility, applicability and efficiency of the contracts in supply chains. Cachon and Lariviere

(2005) show how some of these contracts are interrelated and sometimes how they are identical.

However, bulk of this research deals with linear prices under a variety of contractual conditions

and/or environment (see Cho and Gerchak 2001, Chen and Federgruen 2001). The primary results

relate to conditions under which coordination is achieved and deviation from optimal performance

of the supply chain. For instance, in a standard newsvendor problem, Lariviere and Porteus (2001)

show that the price only contract does not coordinate the supply chain as the retailer does not

order enough inventory to maximize the supply chain’s profit. However, coordination is possible

under buy back contract (Pasternack 1985) and quantity discount contract (Tomlin 2003).

Limited research has been reported on coordination mechanisms that involve profit/risk sharing

along with linear prices. For example, Lariviere and Porteus (2001) model the risk sharing behavior

in a newsboy problem using price-only contracts and obtain the conditions in which supply chains

are coordinated. Jeuland and Shugan (1983) demonstrate how profit sharing can coordinate a

supply chain. Foros et al. (2009) examine the profit sharing based coordination mechanism in the

context of the Norwegian telecommunications industry. In their paper, Foros et al. (2009) show how

the mechanism helps the upstream firm in preventing destructive competition between downstream

firms that produce relatively close substitutes. Chen et al. (2001) show how the profit sharing based

mechanism coordinates a distribution channel when demand is uncertain. Heywood and Jirjahn

(2009) show the interdependence of firm size and profit sharing for different types of technologies.
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Azfar and Danninger (2001) show how employment stability and wage growth can be influenced

via profit sharing.

To summarize, the focus of literature on coordination mechanism in supply chain is on efficiency

with the objective of developing mechanisms that achieve optimal performance for the entire supply

chain. The sustainability and integrity of the supply chain is implicit and thus stability issues have

not received much attention. (It may be noted that stability issues considered in Lee et al. (1997),

Rinddalls and Bennett (2002), Daganzo (2004), Ouyang (2007) and many others are in the context

of bullwhip effect that relates to supply chain performance and different from sustainability issues

that we consider in this paper.) While supply chain stability is not a major factor for supply

chains with no constraints on participation, it is an important issue for a class of supply chains

with participative restrictions. As described earlier, cooperatives, exclusive dealerships, franchises,

etc. are examples of supply chains with exclusivity contracts for the members that forbid member

participation in competing supply chains. We address this gap in the literature and develop a game

theoretic model to examine related issues and devise structural results to characterize stability of

such systems and provide managerial insights. In the following section, we review related literature

from economics.

2.2. Network Stability

As mentioned earlier, there exists extensive literature in economics devoted to the study of net-

works. While much of this research focuses on network formation and application of game theoretic

approaches to study existence and properties of equilibria, some recent work in the area addresses

stability issues in a variety of networks. It may also be noted that the concept of stability is not

unique and several variants of stability have been rendered in the literature. For example, Jackson

and Wolinsky (1996) introduce the notion of pairwise stability based on individual incentives for

the players in maintaining or deviating from the existing linking structure in the network. Simi-

larly, Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2005) define and study

strongly and weakly stable networks based on Nash equilibria. A comprehensive review of this lit-

erature is rather extensive and beyond the scope of this paper. Instead we present a brief overview

of literature that is relevant in the context of the problem considered in this paper. Detailed dis-

cussion on the literature on network formation and stability can be found in Jackson (2003, 2005),

Bloch and Jackson (2006) and the references therein.

A network is pairwise stable if no player would benefit from severing an existing link, and

no two players will benefit by forming a new link. Accordingly, this stability concept considers

deviations on a single link at a time. In our problem, the producers in the market are independent
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economic entities, and their decision on network participation is purely based on own interests.

By the individual decision making aspect of the producers in the market, the notion of pairwise

stability can be adopted to address the stability issues in our model. Pairwise stability is too weak

condition for modeling network formation, however, it is a necessary condition for stronger stability

notions (Calvó-Armengol 2003). Due to its computational (relative) simplicity and its ability to

generate sharp predictions in many contexts, pairwise stability concept has been widely adopted in

applied studies. Many social and economic network models, such as connections model, co-author

model (Jackson and Wolinsky 1996), spatial connections model (Johnson and Gilles 2000), buyer-

seller networks (Kranton and Minehart 2000, 2001), free-trade networks (Furusawa and Konishi

2007), communication networks (Slikker and van den Nouweland 2000), resource sharing and cost

reduction (Goyal and Joshi 2003), etc. are analyzed using pairwise stability.

The approach used in Shaffer (1995), Bloch (2002) and Escrihuela-Villar (2002) in the context

of sustainability and stability of cartels is similar to the one used in our paper. Shaffer (1995)

studies stability issues in a competitive market with two types of players; a cartel with power to

enforce its decision on its members and fringe players (not members of the cartel). The problem is

modeled using the frameworks of Cournot and Bertrand type simultaneous-moves and Stackelberg

kind leader-follower. The cartel is assumed to behave as a monopolist. The main results of the

paper relate to characterization of relative sizes of the cartel and fringe players for stability of

the network. Escrihuela-Villar (2002) studies how the participation incentive interacts with the

incentive to maintain a collusive agreement. The main result is that collusion is easier to sustain

in the larger coalition. Firms will be more willing to participate because otherwise, they risk that

collusion completely collapses, as remaining members are unable to sustain collusion. We find these

results apply under special conditions in our study. Bloch (2002) models cooperation based on

collusive agreements and cost-reducing alliances. The main results are: (i) all firms prefer to stay

outside the coalition (cartel) and free-ride on the public good provided by the coalition (cartel)

members in a simultaneous link formation framework, and (ii) in a bilateral collusive network,

there are exactly two pairwise stable networks: the empty network and the complete network. The

author also finds that profits of each firm in a stable coalition are less than those of an associated

Cournot fringe firms. In our context, we show that the result is not necessarily valid.

While there are similarities between our approach and that of Shaffer (1995), Bloch (2002) and

Escrihuela-Villar (2002), our focus and the problem context are different. For example, unlike the

earlier work, we explicitly model and consider the cost differences between the two types of players

and study their impact on stability of the network. Similarly, we do not assume an enforcement
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mechanism as in Shaffer (1995) and Bloch (2002). Instead we explicitly include in the model

coordination mechanism to reflect operational reality of the network. More generally, the economics

literature ignores operational details and the analysis and results are based on exogenously specified

allocations rules and value functions. In our context, we focus on the operational details and

endogenous value functions. Hence, in addition to the impact of the relative size of the two groups,

we focus on the cost differences, and the parameter choices of the coordination mechanism and

determine their impact on stability. In the process, we characterize the equilibrium production

quantity and profits of the different players as well.

3. Model Building

Motivated by the AMUL environment described in Section 1, in this paper we examine stability

issues in a two-tier supply chain for a single product with n producers. In order to focus on the key

factors affecting stability, we assume that the producers are identical with unit production cost and

ignore capacity constraints. We consider the supply chain in which m of the producers (referred to

as independent producers) supply the market directly. The remaining (n−m) producers (referred

to as network producers) form a network and supply the market through a marketing agent (Refer

Figure 1). We assume that the independent producers and the network producers incur marketing

and distribution costs of vIP and vNP per unit, respectively. This is in addition to the constant

manufacturing cost of c per unit. We assume that vIP > vNP to reflect the benefits realized through

economies of scale and cooperative behavior of the network producers. We also assume that there

are no fixed costs associated with production, sales and distribution functions of the players.

We consider a competitive market with undifferentiated product and downward sloping demand

curve. We assume that the market price is given by p (q) = a− bq, where q is the total supply in the

market, a represents the limiting price (beyond which there is no demand), and b, the rate of price

change with respect to the market supply, denotes the price sensitivity to the supply quantity.

Besides performing the distribution and selling functions for the network producers the marketing

agent acts as a coordinator for aligning the producers’ decisions with the network objectives. In

this paper we consider a coordination mechanism, a price and profit sharing based coordination

mechanism, that is similar to the one practiced in our motivating example and popular in the

literature as well. The mechanism involves two parameters: (i) procurement price w offered by the

marketing agent to the network producers, and (ii) �, the fraction of the marketing agent’s surplus

(surplus net of cost of sales and distribution, and procurement) distributed among the network

producers. The surplus is distributed among the network producers in proportion of the quantity
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Figure 1 Network Structure

supplied. The remainder of the surplus is retained by the marketing agent. It may be noted that

this coordination mechanism is similar to the ones studied in Azfar and Danninger (2001), Chen

et al. (2001), Foros et al. (2009) and Heywood and Jirjahn (2009) and described earlier in Section

2. In our model, we assume that the network’s objective is to maximize the surplus generated for

the network producers, and hence, the marketing agent’s role is to choose the parameters (w,�)

consistent with this objective. The marketing agent announces these parameters and is required

to accept the entire supply from the network producers. We further assume that all producers -

both network and independent - act in their respective interests and respond accordingly to the

marketing agent’s choice of the parameters of the coordination mechanism.

We assume that the cost parameters, the parameters of the coordination mechanism and the

demand function are common knowledge. We now present the decision problem for these three

kinds of players: network producers, independent producers, and the marketing agent. The complete

notation used is summarized in Table 1.

Let �i, �j, and �N be the net surplus for network producer i, independent producer j, and the

entire network, respectively.

The network producer i’s problem, NPi, is given by:
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Parameter Description

n Number of producers in the market

m Number of independent producers (m<n)

(n−m) Number of network producers

i (or k) Network producer i (or k); i, k= 1,2, ..., (n−m)

j (or l) Independent producer j (or l); j, l= 1,2, ...,m

qi Quantity produced by network producer i

qj Quantity produced by independent producer j

�i Portion of network producer i in the profit shared by the marketing agent; �i = qi/
∑

k qk

q Total supply of the product in the market; q=
∑n−m

i=1 qi +
∑m

j=1 qj

p Marketing clearing price of the product; p (q) = a− bq

q−i
∑

k ∕=i qk +
∑

j qj

q−j
∑

i qi +
∑

l ∕=j ql

w Per unit procurement price for the product offered by the marketing agent to the network producers

� Fraction of the surplus shared by the marketing agent with the network producers; �∈ [0,1]

c Producer’s marginal cost of production

vNP Marketing agent’s marginal cost of sales and distribution of the product

vIP Independent producer’s marginal cost of sales and distribution of the product

�i Profit function of network producer i

�j Profit function of independent producer j

�N Profit function of the supply chain network

�MA Profit function of the marketing agent

Table 1 Notation

NPi : �i (w,�, q−i) = max
qi≥0

(w− c) qi +��i

{
[p (q)−w− vNP ]

n−m∑
k=1

qk

}
= max

qi≥0
[(1−�)w+� (a− vNP )− c−�b (qi + q−i)] qi (1)

The independent producer j’s, IPj, is given by:

IPj : �j (w,�, q−j) = max
qj≥0

[p (q)− c− vIP ] qj

= max
qj≥0

[a− c− vIP − b (qj + q−j)] qj (2)

The marketing agent’s problem, MA, is given by:
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MA : �N (q) = max
w≥0

0≤�≤1

[p (q)− c− vNP ]
n−m∑
k=1

qk

= max
w≥0

0≤�≤1

[a− c− vNP − bq]
n−m∑
k=1

qk (3)

An alternative objective for the marketing agent could be to maximize the agent’s profit. Hence,

the marketing agent’s problem can be formulated as follows:

�MA (q) = max
w≥0

0≤�≤1

(1−�) [p (q)− c− vNP ]
n−m∑
k=1

qk

= max
w≥0

0≤�≤1

(1−�) [a−w− vNP − bq]
n−m∑
k=1

qk

However, as mentioned earlier, we consider the marketing agent’s problem as given in (3).

In the remainder of this paper, we make the following assumptions about the relative costs of

the network and independent producers.

Assumption 1. a− c− vIP ≥ 0

Assumption 2. a− c− vNP ≥ 0

Assumption 3. vIP > vNP

The assumptions above are motivated by the problem context. It may be noted that if the

assumptions do not hold, the problem is not meaningful and/or may be solved trivially. For exam-

ple, Assumptions 1 and 2 are necessary for both players to compete. As mentioned earlier, Assump-

tion 3, is a consequence of economies realized by cooperation among the network producers and

there is incentive to form a network if the assumption does not hold.

We conclude by noting that the objective functions of the problems NPi and IPj are concave

in their respective arguments. The objective function of the problem MA is also concave in its

argument which is shown in next section. Further, the problem structure is a Stackelberg kind of

sequential game with marketing agent as the leader. With parameters w and � given (announced

by the marketing agent), the producers’ decisions in the second stage follow a Cournot type game.

Below we present the analysis of the model for � ∈ (0,1). The two special cases with �= 0 and

�= 1 are discussed in Section 5. For brevity, we drop the arguments - such as � - whenever they

are obvious.
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4. Model Analysis

The network producers and the independent producers respond to the marketing agent’s offer in

the price and profit sharing based coordination mechanism. We take the backward induction based

solution approach to obtain the subgame equilibrium of the game between the marketing agent and

the producers in the market. First, we characterize the producers’ decisions as a subgame-perfect

Nash equilibrium of the of the simultaneous-move type Cournot game in which each producer

maximizes its profit as a response to the total production of the other producers in the market and

the marketing agent’s offer. Further, we analyze the marketing agent’s problem by incorporating

the Nash equilibrium of the producers’ response functions and characterize the equilibrium of the

game.

4.1. Producer’s Problem

First, we characterize in Lemma 1 below the response function for each type of producer. The

response function describes the optimum production for the producer, given the quantity supplied

by the other producers in the system.

Lemma 1. The response functions for the network producers and the independent producers are

as follows:

q∗i (w,q−i) =

⎧⎨⎩
fi (w,q−i)

2�b
if fi (w,q−i)> 0

0 otherwise
(4)

q∗j (w,q−j) =

⎧⎨⎩
fj (w,q−j)

2b
if fj (w,q−j)> 0

0 otherwise
(5)

where,

fi (w,q−i) = (1−�)w+� (a− vNP )− c−�bq−i (6)

fj (w,q−j) = a− c− vIP − bq−j (7)

By symmetry, the optimal decisions of the network producers are identical, and the same is

valid for the independent producers. Hence, in the remainder of the paper we restrict our attention

to solutions that satisfy this condition and denote by q∗NP (q∗IP ) the production quantity of each

network (independent) producer.

Lemma 2. The response functions for the network producers and the independent producers are

as given below:

q∗NP (w,qIP ) =

⎧⎨⎩
fNP (w,qIP )

(n−m+ 1)�b
if fNP (w,qIP )> 0

0 otherwise
(8)
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q∗IP (w,qNP ) =

⎧⎨⎩
fIP (w,qNP )

(m+ 1) b
if fIP (w,qNP )> 0

0 otherwise
(9)

where,

fNP (w,qIP ) = (1−�)w+� (a− vNP )− c−�bmqIP (10)

fIP (w,qNP ) = a− c− vIP − b (n−m) qNP (11)

The response functions described in Lemma 2 are useful for determining the production strategies

of network and independent producers in equilibrium for a given w and �. In Theorem 1 below we

characterize the resulting equilibrium and show it is Nash equilibrium.

Theorem 1. The unique Nash equilibrium of the producer’s problem is given as follows:

q∗NP (w) =

⎧⎨⎩
0 if w≤wmin

kNP (w)

(n+ 1)�b
if wmin <w<wmax

(1−�)w+� (a− vNP )− c
(n−m+ 1)�b

if w≥wmax

(12)

q∗IP (w) =

⎧⎨⎩
a− c− vIP
(m+ 1) b

if w≤wmin

kIP (w)

(n+ 1)�b
if wmin <w<wmax

0 if w≥wmax

(13)

where,

wmin = c−
(

�

1−�

)[
(a− c− vNP ) +m (vIP − vNP )

(m+ 1)

]
(14)

wmax = c+

(
�

1−�

)[
(a− c− vIP )− (n−m) (vIP − vNP )

(n−m)

]
(15)

kNP (w) = (m+ 1) (1−�) (w− c) +� (a− c− vNP ) +m� (vIP − vNP ) (16)

kIP (w) = � (a− c− vIP )− (n−m) [(1−�) (w− c) +� (vIP − vNP )] (17)

Besides describing the equilibrium solution, Theorem 1 provides several interesting results. First,

it indicates that there exists a threshold procurement price wmin below which the network producers

do not compete. It may be noted that the threshold is lower than the network producer’s marginal

cost c, and takes into account the additional revenue that accrues due to surplus sharing mechanism.

Similarly, the theorem indicates that there exists a threshold procurement price wmax above which

the independent producers do not compete. Since wmin ≤ wmax, in the interval [(wmin) , (wmax)],

both network and independent producers compete in the market.

Propositions 1 and 2 below provide a summary of the description above and the insights from

Theorem 1.
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Proposition 1. wmin is decreasing in both � and vIP , and it is increasing in m. wmax is decreas-

ing in vIP , and it is increasing in both � and m.

wmin decreasing in � shows that lower procurement price is sufficient for higher level of profit

sharing so that the network producers compete. Similarly, lower procurement price suffices for

higher vIP so that the network producers compete. On the contrary, with increasing competition

in the market, i.e., m, higher procurement price is required. Higher value of vIP indicates that the

independent producers are less competitive (in comparison with the network producers) and drop

out of the market at lower value of w as reflected by decreasing wmax. On the contrary, for higher

profit sharing, i.e., �, and/or competition in the market, i.e., m, the independent producers drop

out of the market at higher value of w as reflected by increasing wmax.

Proposition 2. In equilibrium, production quantity of the network producers is non-decreasing

and that of the independent producers is non-increasing in the procurement price w.

4.2. Marketing Agent’s Problem

As mentioned earlier, the marketing agent is the Stackelberg leader for the producers in the market,

and its problem is to maximize the network surplus, as given in (3). In this section, we assume

that � is given and analyze the marketing agent’s decision on procurement price w. (Choice of � is

discussed in Section 5). By the assumptions of complete information and rationality of the players

in the game, the marketing agent anticipates the response functions of the network producers and

the independent producers, and the resulting Nash equilibrium as given in Theorem 1, and uses

the information for choosing the procurement price w. The resulting profit function for the supply

chain network is as given below:

�N (w) =

⎧⎨⎩
0 if w≤wmin

{a− c− vNP − b [(n−m) q∗NP (w) +mq∗IP (w)]} (n−m) q∗NP (w) if wmin <w<wmax

{a− c− vNP − b (n−m) q∗NP (w)} (n−m) q∗NP (w) if w≥wmax

(18)

where q∗NP (w) and q∗IP (w) are as given in Theorem 1.

The marketing agent’s problem is to maximize �N (w) such that w ≥ 0. First, we characterize

the objective function as follows:

Lemma 3. The objective function of the marketing agent’s problem, i.e., �N (w), is strictly con-

cave in w over the regions [wmin,wmax) and (wmax,+∞).

From Lemma 3, we observe that �N is strictly concave in its argument over two disjoint regions

with a possible non-conformity at wmax. In Theorem 2 below, we show that the function is concave

in its argument over the domain formed by the union of the two disjoint regions.
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Theorem 2. The objective function of the marketing agent’s problem, i.e., �N (w), is strictly

concave in w for w≥wmin.

Corollary 1. The marketing agent’s problem of maximizing the network surplus is a convex

program; the first order optimality conditions are necessary and sufficient.

In Theorem 3 below we characterize the optimal solution for the marketing agent’s problem.

Theorem 3. The unique optimal solution for the marketing agent’s problem is as given below:

w∗ =

⎧⎨⎩
w∗1 if vNP < vIP < v

s
m

wmax if vsm ≤ vIP < vs

w∗2 if vs ≤ vIP ≤ (a− c)
(19)

where,

w∗1 = c−
(

�

1−�

)[
(n− 2m− 1) [(a− c− vNP ) +m (vIP − vNP )]

2 (n−m) (m+ 1)

]
(20)

w∗2 = c−
(

�

1−�

)[
(n−m− 1) (a− c− vNP )

2 (n−m)

]
(21)

vsm = vNP +
a− c− vNP

(m+ 2)
(22)

vs = vNP +
a− c− vNP

2
(23)

Corollary 2. A characterization of the optimal solution to the marketing agent’s problem,

MA, is given in Table 2.

vNP < vIP < v
s
m vsm ≤ vIP ≤ vs vs < vIP ≤ (a− c)

w∗ w∗1 wmax w∗2

q∗NP
a− c− vNP +m (vIP − vNP )

2 (n−m) b

a− c− vIP
(n−m) b

a− c− vNP
2 (n−m) b

q∗IP
a− c− vIP − (m+ 1) (vIP − vNP )

2 (m+ 1) b
0 0

p∗
a+ (2m+ 1) c+ (m+ 1)vNP +mvIP

2 (m+ 1)
c+ vIP

a+ c+ vNP
2

�∗NP �b (q∗NP )
2

�b (q∗NP )
2

�b (q∗NP )
2

�∗IP b (q∗IP )
2

0 0

�∗N
b ((n−m) q∗NP )

2

(m+ 1)

1

b
(vIP − vNP ) (a− c− vIP )

1

b

(
a− c− vNP

2

)2

Table 2 Optimal Solution to Problem MA
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Table 2 provides several interesting insights and describes the impact of various factors on the

equilibrium condition resulting from optimal decision on procurement price, w. First, while the

independent producers can be shut out of the market when vIP is relatively large (be appropriate

choice of w), if is not surprising that network producers will always participate in the market.

Second, when vIP is relatively low both network and independent producers compete in the market.

With increasing vIP , the independent producers become less competitive and q∗NP increases. This

behavior holds when vIP < vsm. The pattern of supply from the network producers (q∗NP ) change

in the region vsm ≤ vIP ≤ vs. In this region, q∗NP is decreasing in vIP . Essentially, in this region

the marketing agent’s price w is such that the independent producers are shut out of the market.

Beyond vs, the independent producers are no longer competitive and marketing agent behaves

like a monopolist. While the production quantity is not monotonic, the network surplus (and the

surplus of the network producers) is monotonically increasing in vIP in the region vNP < vIP ≤ vs

and constant beyond vs, thus resulting lower competitiveness from the independent producers.

More interesting is the result that shows that network surplus depends on cost parameters and m,

the number of independent producers, but is independent of �. The result be intuitively understood

as � and w reflect internal mechanism among the network producers and that should not affect

the network’s competitive position vis-à-vis the independent producers. However, as we discuss in

more detail in the next section, the choice of � is important since it has implications for network

stability.

The results of Table 2 are also useful for assessing the impact of competition through m, the

number of independent producers. It may be noted that competition for the network is diluted with

increasing m and results in higher surplus and production from the network producers. The market

price likewise is increasing in m and vIP in the region in which both network and independent

producers are active. We conclude this section with the observation that together these results

are useful in understanding the implications of different factors and may be helpful developing

strategies to compete effectively.

5. Network Stability

In this section we use the results of the previous section to examine issues related to the stability of

the supply chain. In particular, our objective is to identify conditions under which the cooperative

arrangement of the network producers is stable. Accordingly, we adopt the notion of pairwise

stability introduced by Jackson and Wolinsky (1996) and define the network to be internally stable

if there is no economic incentive for the network producers to break the network relationship and
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operate as independent producer, i.e., �∗NP (m)> �∗IP (m+ 1). Similarly, we define the network to

be externally stable if there is no incentive for the independent producers to join the network, i.e.,

�∗IP (m) > �∗NP (m− 1). Clearly, a network that is both internally and externally stable is stable

with incentives for either player to alter the existing arrangement. External instability implies that

the network is attractive and that the independent producers have an interest in becoming a part of

the network. (In a completely different context, this kind of behavior is observable in sports issues

such as NFL in the USA, IPL in India.) Internal instability, on the other hand, implies that the

cooperative arrangement is not sustainable and likely to disintegrate in the absence of compliance

mechanism. In the remainder of this section we examine these issues with focus on the impact of

three factors: (i) cost parameters (vNP , vIP ), (ii) number of producers m and level of competition,

and (iii) profit sharing �.

5.1. Impact of Number of Producers

Proposition 3. The network is internally stable and externally unstable if m>ms, where

ms = ⌊a− c− vIP
vIP − vNP

⌋− 1 (24)

Proposition 3 provides a bound on the number of independent producers, or equivalently, the

size of the network, such that the network is internally stable and externally unstable if the number

of independent producers is more than the lower bound. In other words, if the competition among

the producers in the market is beyond a threshold value, given by ms, no network producer has

any incentives to sever its linkages in the network and compete independently. On the contrary,

every independent producer has incentives to join the network. From (24), we also observe that

ms is non-increasing in vIP which suggests that internally stability of the network improves for the

increasing marginal cost of the independent producers.

From Corollary 2, for vNP < vIP < vsm, we know that the net profit for a network producer a

function of the value of � selected by the marketing agent. Therefore, whether the network is stable

or not depends on �. Extending the results from Proposition 3, we can say that, for m≤mvIP
s , the

stability of the network depends on � too.

Proposition 4. If (vIP − vNP ) > (a− c− vNP )

(
1

2
−
√
�

n

)
, the network is internally stable.

Otherwise, there exists an ms
l such that the network is internally stable for m>ms

l and internally

unstable for m<ms
l , where ms

l is the smallest m that satisfies the following condition:

√
�

[
(a− c− vNP ) +n (vIP − vNP )

n−m

]
+
(
1−
√
�
)

(vIP − vNP )>
a− c− vNP
m+ 2

(25)
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Proposition 5. If (a− c− vIP )

(
1

n+ 1
−
√
�

)
> (1 +n

√
�) (vIP − vNP ), the network is exter-

nally stable. Otherwise, there exists an ms
u such that the network is externally unstable for m>ms

u

and externally stable for m<ms
u, where ms

u is the smallest m which satisfies the following condi-

tion:

a− c− vIP
m+ 1

>
√
�

[
(a− c− vNP ) +n (vIP − vNP )

n−m+ 1

]
+
(
1−
√
�
)

(vIP − vNP ) (26)

Proposition 3, 4 and 5 describe some properties of network stability as a function of cost parame-

ters (vIP , vNP ), profit share (�), and the number of producers. For example, for given costs vIP , vNP

and choice of �, Proposition 4 identifies a lower bound on the number of independent producers for

internal stability of the network. If the number of independent producers is below the lower bound,

the network is internally unstable and there exist incentives for some producers in the network to

sever links with the marketing agent. Similarly, Proposition 5 identifies an upper bound on the

number of independent producers for external stability. If the number of independent producers is

above the upper bound, the network is externally unstable. Together Proposition 4 and 5 identify

a range for the number of independent producers in which the network is stable. We note that ms
l

is non-increasing in vIP . This is consistent with the intuition that as the independent producers

become less competitive (higher vIP ), the network is internally stable. Similarly, we note that ms
u

is non-increasing in vIP . The proposition also indicates that if the level of competition from the

independent producers is known (m is given), choice of � and network efficiency (vNP ) may have

an impact on network stability. These aspects are discussed in the following section.

Corollary 3. If ms
l ≤ ms

u, then there exists a range of m, given by [ms
l ,m

s
u], in which the

network is internally as well as externally stable.

5.2. Impact of Marginal Cost

Proposition 6. If vIP ≥ vsm, the network is internally stable but it is external unstable.

Clearly, the relative cost of network and independent producers is a crucial parameter with

implications for stability. Proposition 6 identifies the threshold value, vsm − vNP =
a− c− vNP
m+ 2

,

for the cost difference beyond which independent produces exert no impact on the supply chain.

Further it may be noted that this threshold cost difference is decreasing in m which suggests that

with increase in the number of independent producers, the increased competition improves the

network stability.

From Corollary 2, we know that the net profit for a network producer is a function of the value

of � selected by the marketing agent. Therefore, whether the network is stable or not depends on



19

� too. Extending the results from Proposition 6, we derive results on network stability in relation

to the marginal cost of the independent producers and profit sharing parameter �.

Theorem 4. For given m and �, such that vNP < vIP < vsm, the network is internally stable

if vIP > vsl , and it is internally unstable if vIP < vsl . Similarly, the network is externally stable if

vIP < v
s
u, and it is externally unstable if vIP > v

s
u. Here,

vsl = vNP +
[(n−m)−

√
� (m+ 2)] (a− c− vNP )

(n−m) (m+ 3) +
√
�m (m+ 2)

(27)

vsu = vNP +
[(n−m+ 1)−

√
� (m+ 1)] (a− c− vNP )

(n−m+ 1) (m+ 2) +
√
� (m− 1) (m+ 1)

(28)

The network is both internally and externally stable if vsl ≤ vIP ≤ vsu.

Theorem 4 states that there exist bounds on the marginal cost of sales and distribution of the

product for the independent producers so that the network is internally and/or externally stable.

By showing that vsl ≤ vsu ≤ vsm, we can conclude that the network stability is always guaranteed for

a certain range of the marginal cost of sales and distribution of the product for the independent

producers. Figure 2 shows the interrelationship between the network stability for the price and

profit sharing based coordination mechanism and the marginal cost for the producers.

IP
v

ca −

External

Stability
Internal

Stability

External & Internal

Stability

s

m
vs

u
v

s

l
vNP

v

Figure 2 Network Stability - Cost Differences

From (27) and (28), we observe that both vsl and vsu are decreasing in �. Therefore, we say that,

higher the profit share, lower are the bounds on the marginal cost of the independent producers so

that the network is internally and externally stable. In other words, for higher level of profit sharing,

the network is internally stable even for the lower marginal cost for the independent producers. A

managerial insight from this observation is that, for given vIP and m, the profit sharing parameter,

�, can be used as a tool to induce stability in the network.
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5.3. Impact of Profit Sharing

Recall that coordination mechanism for the network producers involves �, the profit sharing param-

eter. The analysis in Section 4 is based on the assumption that � is given, and 0<�< 1. In this

section we first complete the analysis by considering the special cases with �= 0 and �= 1 and

discuss implication of the choice of �. While results in Section 4 suggest that network surplus is

independent of �, the producers’ share is influenced by �, and hence, impacts network stability. In

our analysis, we use we use Lemma 2 that characterizes the response functions for both network

and independent producers.

5.3.1. Special Case : � = 0

For � = 0, we note the price and profit sharing based coordination mechanism reduces to price

only mechanism. When w> c, we observe that q∗NP =∞, q∗IP = 0, and hence, �∗N =−∞. Therefore,

w > c is not an optimal solution for the marketing agent’s problem. When w < c, q∗NP = 0, q∗IP =

(a− c− vIP )/ (m+ 1) b, and hence, �∗N = 0 and �∗IP = [(a− c− vIP )/ (m+ 1)]
2
b≥ 0. Accordingly,

for w < c, the network producers do not compete in the market. When w = c, the system is

indeterminate and equilibrium is not assured. When �= 0, �∗N = (−∞,0], and hence, �= 0 is not

a solution for the marketing agent’s problem.

5.3.2. Special Case : � = 1

The analysis of this case parallels that in Section 4. When �= 1, Lemma 2 can be rewritten as

follows:

Lemma 4. The response functions for the network producers and the independent producers are

as given below:

q∗NP (qIP ) =

⎧⎨⎩
fNP (qIP )

(n−m+ 1) b
if fNP (qIP )> 0

0 otherwise
(29)

q∗IP (qNP ) =

⎧⎨⎩
fIP (qNP )

(m+ 1) b
if fIP (qNP )> 0

0 otherwise
(30)

where,

fNP (qIP ) = a− c− vNP − bmqIP (31)

fIP (qNP ) = a− c− vIP − b (n−m) qNP (32)

Here, we note that the response functions for both independent and network producers are

independent of the procurement price w. This is due to the fact that with �= 1, the entire profit
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of the network is shared with the network producers, and hence, the intermediate procurement

price from the marketing agent is inconsequential for the producers while determining their supply

quantity. Theorem 5 below provides a complete characterization of the resulting equilibrium.

Theorem 5. For �= 1, the Nash equilibrium of the producer’s problem is given in Table 3.

vNP < vIP < v
s
m∣�=1 vsm∣�=1 ≤ vIP ≤ (a− c)

q∗NP
(a− c− vNP ) +m (vIP − vNP )

(n+ 1) b

a− c− vNP
(n−m+ 1) b

q∗IP
(a− c− vIP )− (n−m) (vIP − vNP )

(n+ 1) b
0

p∗
a+n (c+ vNP ) +m (vIP − vNP )

(n+ 1)

a+ (n−m) (c+ vNP )

(n−m+ 1)

�∗NP b (q∗NP )
2

b (q∗NP )
2

�∗IP b (q∗IP )
2

0

�∗N (n−m) b (q∗NP )
2

(n−m) b (q∗NP )
2

Table 3 Nash Equilibrium when �= 1

wℎere, vsm∣�=1 = vNP +
a− c− vNP
(n−m+ 1)

(33)

Proposition 7. The optimal solution for the marketing agent’s problem is such that �< 1.

Proposition 7 shows that the optimal strategy for the marketing agent is not share the entire

network surplus among the network producers. From Theorem 5 above, for � = 1, we also note

that the equilibrium profit for the network producers is never zero, and it is a non-decreasing in

vIP and increasing in m. The bound on vIP given by vsm∣�=1 has the same characteristics as that

of vsm observed in Section 4. The network is internally stable and externally unstable, for given m,

if vIP > v
s
m∣�=1.

Proposition 8. Define

�sl =

[
q∗IP (m+ 1)

q∗NP (m)

]2
, and �su =

[
q∗IP (m)

q∗NP (m− 1)

]2
(34)

The network is internally stable if �>�sl , and it is internally unstable if �<�sl . Also, the network

is externally stable if �<�su, and it is externally unstable if �>�su.

Corollary 4. �sl ≤ �su, and hence, the network is internally as well as externally stable for

�∈ (�sl , �
s
u). (Refer Figure 3)
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Proposition 8 and Corollary 4 together bring out the influence of � on network stability. Propo-

sition 8 identifies the threshold level of �, (�sl ) that is needed to keep the network stable. it is

interesting to note that �sl is non-increasing in m thus showing that the network internally stable

at lower level of � with more competition from the independent producers. (�sl , �
s
u) denotes the

range of � in which both network and independent producers compete. Since the network surplus

is independent of �, the choice of � may be guided by stability conditions and the desire of the

marketing agent and the network producers to maintain advantage over the independent producers.
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Figure 3 Network Stability - Profit Sharing

6. Conclusions

In this paper we have developed a game-theoretic model to study stability issues in two-tier supply

chain comprising to two types of producers - independent producers who compete directly in the

market and network producers that compete through a marketing agent who acts as a coordinator.

The model is appropriate for supply chains with exclusivity contracts, franchises, cooperatives, etc.

that operate in a competitive environment. While coordination issues have received much attention

in the literature with focus on performance/efficiency and design and analysis of coordination

mechanisms, stability issues have largely remained unexplored. The work reported in this paper is

complementary in nature and bridges this gap in the literature.

Our results can be broadly classified into two categories: (i) Characterizing the equilibrium

solutions resulting from the parameter choices of the coordination mechanism and describing the

impact of cost parameters and the number of independent producers on the network surplus, prices,

production, etc. (ii) Network stability: Here we identify conditions under which the network is

stable and develop bounds on parameters for assuring stability. Our results are based on simpli-

fying assumptions, nevertheless they are useful and provide insights and guidelines for managerial
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decision making. Of particular interest is the role of �, the profit sharing parameter. While the

choice of � does not impact the network surplus, it has implications for network stability.

The model and the results presented in this paper may be interpreted as a building block in

the development of a richer and a more comprehensive framework. We conclude the paper with

some guidelines in this regard. First, our analysis is based on one coordination mechanism. While

the one analyzed in the paper is common and popular, it may be useful to extend the analysis to

other mechanisms and to the extent possible, generalize the results. Second, we ignored capacity

constraints and assumed that the producers are identical. Extensions of the model to relax these

assumptions may be useful in developing results that go beyond qualitative insights and provide

aid for decision support.
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Appendix

Proof of Lemma 1. Since the network producer’s problem is a convex program, the Kurush-Kuhn-Tucker

(KKT) conditions are necessary and sufficient for optimality. The KKT optimality conditions for network

producer i’s problem are as follows:

q∗i (w,q−i) =
(1−�)w+� (a− vNP )− c−�bq−i +�∗i

2�b
=
fi (w,q−i) +�∗i

2�b
(35)

q∗i �
∗
i = 0 (36)

q∗i , �
∗
i ≥ 0 (37)

Clearly, q∗i as defined in (4) together with �∗i = max{0,−fi (w,q−i)} satisfies KKT conditions (35)-(37) and

the Lemma follows. The second part of the Lemma characterizing response functions for the independent

producers can be shown similarly. □

Proof of Lemma 2. Substitute q∗i = q∗NP , i = 1,2, ..., (n−m), and q∗j = q∗IP , j = 1,2, ...,m, in (6)-(7), and

simplify to obtain the results in Lemma 2. □

Proof of Theorem 1. To prove the theorem it is sufficient to show that the production quantities specified

by (12) and (13) satisfy simultaneously the response functions (8) and (9) of Lemma 2. Since this solution

denotes best response of each producer to the other’s strategy, it follows from Osborne (2003) that the

resulting equilibrium is a Nash equilibrium. Further, since the profit functions for network and independent

producers are concave in their respective arguments, by Theorem 1.2 of Fudenberg and Tirole (1991), a pure

strategy Nash equilibrium exists.



24

Note that kNP is linear in w and kNP (wmin) = 0. kIP is likewise linear in w with kNP (wmax) = 0. It

follows that the response functions q∗NP (w) and q∗IP (w) are such that q∗NP (w) = 0(q∗IP (w) = 0)for w ≤

wmin (w≥wmax). We also note that wmin ≤wmax from the fact that:

wmax−wmin =

(
�

1−�

)[
(a− c− vIP )− (n−m) (vIP − vNP )

(n−m)
+

(a− c− vNP ) +m (vIP − vNP )

(m+ 1)

]
=

(
�

1−�

)[
(n+ 1) (a− c− vIP )

(n−m) (m+ 1)

]
> 0 [By Assumption 1]

Case 1. w≤wmin

Clearly, kNP ≤ 0, and hence, q∗NP (w) = 0 satisfies (8). Also, q∗IP given by (13), satisfies (9).

Case 2. wmin <w<wmax

kIP > 0 and q∗IP (w) given by (13), from (10), we obtain:

fNP = (1−�)w+� (a− vNP )− c−�bm kIP (w)

(n+ 1)�b

= (1−�)w+� (a− vNP )− c−�bm
{
� (a− c− vIP )− (n−m) [(1−�) (w− c) +� (vIP − vNP )]

(n+ 1)�b

}
=

(n−m+ 1) [(m+ 1) (1−�) (w− c) +� (a− c− vNP ) +m� (vIP − vNP )]

(n+ 1)

=
(n−m+ 1)kNP

(n+ 1)
> 0

Hence, q∗NP (w) given by (12) satisfies (8). Similarly, kNP > 0 and q∗NP (w) given by (12), from (11), we obtain:

fIP = a− c− vIP − b (n−m)
kNP (w)

(n+ 1)�b

= a− c− vIP − b (n−m)

{
(m+ 1) (1−�) (w− c) +� (a− c− vNP ) +m� (vIP − vNP )

(n+ 1)�b

}
=

(m+ 1) [� (a− c− vIP )− (n−m) [(1−�) (w− c) +� (vIP − vNP )]]

(n+ 1)

=
(m+ 1)kIP

(n+ 1)
> 0

Hence, q∗IP (w) given by (13) satisfies (9).

Case 3. w≥wmax

This case is similar to Case 1 above. kIP ≤ 0, and hence, q∗IP (w) = 0 satisfies (9). Also, q∗NP given by (12),

satisfies (8). □

Proof of Proposition 1. The proof of wmin decreasing in both � and vIP is straightforward from (14).

wmin (m+ 1)−wmin (m)

=−
(

�

1−�

){[
(a− c− vNP ) + (m+ 1) (vIP − vNP )

(m+ 2)

]
−
[

(a− c− vNP ) +m (vIP − vNP )

(m+ 1)

]}
=

(
�

1−�

)[
(a− c− vIP )

(m+ 1) (m+ 2)

]
> 0 [By Assumption 1]

Hence, wmin is increasing in m. The proof of wmax decreasing in vIP and increasing in both � and m is

straightforward from (15). □

Proof of Proposition 2. From (12),
dq∗NP
dw

= 0 when w ≤ wmin. Also,
dq∗NP
dw

=
(m+ 1) (1−�)

(n+ 1)�b
> 0 when

wmin < w < wmax, and
dq∗NP
dw

=
(1−�)

(n−m+ 1)�b
> 0 for w ≥ wmax. Therefore,

dq∗NP
dw

≥ 0. Similarly, we can

prove that
dq∗IP
dw
≤ 0. □
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Proof of Lemma 3. For wmin <w<wmax,

�
′

N =

[
(n−m) (1−�)

(n+ 1)
2
�2b

]{
− 2 (n−m) (m+ 1) (1−�) (w− c)

− (n− 2m− 1)� [(a− c− vNP ) +m (vIP − vNP )]

}
(38)

�
′′

N =

[
(n−m) (1−�)

(n+ 1)
2
�2b

]{
− 2 (n−m) (m+ 1) (1−�)

}
< 0

where, �
′

N =
d�N
dw

and �
′′

N =
d2�N
dw2

. Similarly, for w>wmax,

�
′

N =

[
(n−m) (1−�)

(n−m+ 1)
2
�2b

]{
− 2 (n−m) (1−�) (w− c)− (n−m− 1)� (a− c− vNP )

}
(39)

�
′′

N =

[
(n−m) (1−�)

(n+ 1)
2
�2b

]{
− 2 (n−m) (1−�)

}
< 0

Therefore, �N is strictly concave in w over [wmin,wmax) and (wmax,+∞). □

Proof of Theorem 2. First, we show that �N is continuous in the interval w ≥ wmin and differentiable as

well, except at w=wmax.

Note that for w≥wmax, from Theorem 1 it follows that

q∗IP = 0; q∗NP =
(1−�)wmax +� (a− vNP )− c

(n−m+ 1)�b
=
a− c− vIP
(n−m) b

Therefore,

�N
(
w+

max

)
=

[
a− c− vNP − b (n−m)

a− c− vIP
(n−m) b

]
(n−m)

a− c− vIP
(n−m) b

=
1

b
(vIP − vNP ) (a− c− vIP ) (40)

�
′

N

(
w+

max

)
=

[
(n−m) (1−�)

(n−m+ 1)�b

]{
− (a− c− vIP ) + (vIP − vNP )

}
Also, for w=w−max, i.e., w→w−max,

kIP = 0, and hence, q∗IP = 0

kNP = (m+ 1) (1−�) (wmax− c) +� (a− c− vNP ) +m� (vIP − vNP )

= (n+ 1)�

[
(a− c− vIP )

(n−m)

]
and hence, q∗NP =

a− c− vIP
(n−m) b

Therefore,

�N (w−max) =

[
a− c− vNP − b (n−m)

a− c− vIP
(n−m) b

]
(n−m)

a− c− vIP
(n−m) b

=
1

b
(vIP − vNP ) (a− c− vIP ) (41)

�
′

N (w−max) =

[
(n−m) (1−�)

(n+ 1)�b

]{
− (a− c− vIP ) + (m+ 1) (vIP − vNP )

}
From (40) and (41) it follows that �N (w,�) is continuous but not differentiable at w=wmax.

Second, we show that �
′

N (w−max)≥ �′

N (w+
max). From Assumption 1 and Assumption 3 it follows that

�
′

N (w−max)−�′

N

(
w+

max

)
=

[
(n−m) (1−�)

�b

][
− (a− c− vIP ) + (m+ 1) (vIP − vNP )

(n+ 1)
− − (a− c− vIP ) + (vIP − vNP )

(n−m+ 1)

]
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=

[
m (n−m) (1−�)

�b

][
(a− c− vIP ) + (n−m) (vIP − vNP )

(n+ 1) (n−m+ 1)

]
≥ 0 (42)

From Lemma 3 and (42) above, it follows that

�
′

N (wx)≥ �
′

N (w−max)≥ �′

N

(
w+

max

)
≥ �′

N (wy) , ∀wx ≤wmax ≤wy (43)

From Lemma 3, it is straightforward that �N is concave in w when w<wmax (�) and when w≥wmax (�).

Now, for wa,wb ≥wmin, consider the following two cases:

Case 1. wa ≤wmax (�)≤wb

�N (wb)≤ �N (wmax) +�
′

N

(
w+

max

)
(wb−wmax) [By Lemma 3]

≤ �N (wa) +�
′

N (wa) (wmax−wa) +�
′

N

(
w+

max

)
(wa−wmax) [By Lemma 3]

≤ �N (wa) +�
′

N (wa) (wmax−wa) +�
′

N (wa) (wa−wmax) [By (43)]

≤ �N (wa) +�
′

N (wa) (wb−wa)

Case 2. wb ≤wmax (�)≤wa
The proof is similar to the Case 1 above.

Therefore, by Shapiro (1979), Bertsekas (1999), �N is concave in w for w≥wmin. □

Proof of Theorem 3. First, we show that vsm ≤ vs ≤ (a− c). It follows from (22)-(23) that vsm ≤ vs. Further,

a− c− vs = (a− c− vNP )/2≥ 0 by Assumption 2, and hence, vsm ≤ vs ≤ (a− c).

Case 1. vNP < vIP < v
s
m

Consider w∗1 as a solution for the marketing agent’s problem. The feasibility of the solution, i.e., wmin <

w∗1 <wmax when vIP < v
s
m can be shown as follows:

w∗1−wmin =−
(

�

1−�

){[
(n− 2m− 1) [(a− c− vNP ) +m (vIP − vNP )]

2 (n−m) (m+ 1)

]
−
[

(a− c− vNP ) +m (vIP − vNP )

(m+ 1)

]}
=

(
�

1−�

)[
(n+ 1) [(a− c− vNP ) +m (vIP − vNP )]

2 (n−m) (m+ 1)

]
≥ 0 [By Assumption 1 and 3]

wmax−w∗1 =

(
�

1−�

){[
(a− c− vIP )− (n−m) (vIP − vNP )

(n−m)

]
+

[
(n− 2m− 1) [(a− c− vNP ) +m (vIP − vNP )]

2 (n−m) (m+ 1)

]}
=

(
�

1−�

){
(n+ 1) [(a− c− vNP )− (m+ 2) (vIP − vNP )]

2 (n−m) (m+ 1)

}
> 0 if vIP < v

s
m

Also, from (38), w∗1 satisfies the first order optimality condition as shown below:

�
′

N (w∗1) =

[
(n−m) (1−�)

(n+ 1)
2
�2b

]{
− 2 (n−m) (m+ 1) (1−�) (w∗1− c)

− (n− 2m− 1)� [(a− c− vNP ) +m (vIP − vNP )]

}
= 0

Hence, w∗1 is the optimal solution.
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Case 2. vIP > v
s

Consider w∗2 as a solution for the marketing agent’s problem, and it is feasible, i.e., w∗2 ≥wmax if vIP ≥ vsm
as shown below:

w∗2−wmax

=−
(

�

1−�

){[
(n−m− 1) (a− c− vNP )

2 (n−m)

]
−
[

(a− c− vIP )− (n−m) (vIP − vNP )

(n−m)

]}
=−

(
�

1−�

){
(n−m+ 1) [(a− c− vNP )− 2 (vIP − vNP )]

2 (n−m)

}
≥ 0 if vIP ≥ vs

Also, from (39), w∗2 satisfies the first order optimality condition as shown below:

�
′

N (w∗2) =

[
(n−m) (1−�)

(n−m+ 1)
2
�2b

]{
− 2 (n−m) (1−�) (w∗2− c)− (n−m− 1)� (a− c− vNP )

}
= 0

Hence, w∗2 is the optimal solution.

Case 3. vsm ≤ vIP < vs

We prove that wmax is the optimal solution for the marketing agent’s problem by showing that �N (wmax)≥

�N (w), ∀w≥wmin. Note that w∗1 ≥wmax and w∗2 <wmax for vsm ≤ vIP < vs.

Consider any wa such that wmin <wa <wmax. By Lemma 3, we note that �
′

N (w−max)≥ 0 as �
′

N (w∗1) = 0.

Therefore,

�N (wa)≤ �N (wmax) +�
′

N (w−max) (wa−wmax) [By Lemma 3]

≤ �N (wmax) [Since wa <wmax]

Similarly, consider any wb such that wb ≥wmax. By Lemma 3, we note that �
′

N (w+
max)≤ 0 as �

′

N (w∗2) = 0.

Therefore,

�N (wb)≤ �N (wmax) +�
′

N (w−max) (wb−wmax) [By Lemma 3]

≤ �N (wmax)
[
Since �

′

N

(
w+

max

)
≤ 0
]

Hence, when vsm ≤ vIP < vs, wmax is the optimal solution. □

Proof of Corollary 2. The optimal solution to Problem MA is obtained by substituting w∗ (�) from The-

orem 3 in the expressions from Theorem 1. □

Proof of Proposition 3 From definition of ms, for m>ms, we have m+ 2≥ a− c− vIP
vIP − vNP

+ 1 =
a− c− vNP
vIP − vNP

,

and vsm = vNP +
a− c− vNP
m+ 2

≤ vIP . From Corollary 2, for vIP ≥ vsm, �∗IP (m) = 0 and �∗NP (m)> 0. Further,

since vsm is monotonically decreasing in m, it follows that �∗IP (m+ 1) = 0 and �∗NP (m+ 1)> 0, and hence,

network is internally stable and externally unstable. □

Proof of Proposition 4. From Corollary 2, the condition for internal stability, �∗NP (m) > �∗IP (m+ 1), is

given by the following:

√
�

[
(a− c− vNP ) +n (vIP − vNP )

n−m

]
+
(
1−
√
�
)

(vIP − vNP )>
a− c− vNP
m+ 2
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1. It may be noted that LHS of (25) is increasing in m, while RHS is decreasing in m. Hence, if (25) is

satisfied for m= 0, it is also valid for all m> 0 and the network is internally stable.

2. If (vIP − vNP )> (a− c− vNP )

(
1

2
−
√
�

n

)
, (25) satisfies for m= 0, and the first part of the proposition

follows.

3. (25) is clearly satisfied for m= n.

4. If the condition of the proposition is not valid, i.e., (vIP − vNP )≤ (a− c− vNP )

(
1

2
−
√
�

n

)
, then (1)

and (3) above imply that (25) is satisfied for some integer m such that 0≤m≤ n. Let ms
l denote the smallest

integer that satisfies (25).

It follows that (25) is satisfied for all m≥ms
l and the second part of the proposition follows. □

Proof of Proposition 5. From Corollary 2, the condition for external stability, �∗IP (m) > �∗NP (m− 1), is

given by the following:

a− c− vIP
m+ 1

>
√
�

[
(a− c− vNP ) +n (vIP − vNP )

n−m+ 1

]
+
(
1−
√
�
)

(vIP − vNP )

1. It may be noted that LHS of (26) is decreasing in m, while RHS is increasing in m. Hence, if (25) is

satisfied for m= n, it is also valid for all m<n and the network is externally stable.

2. If (a− c− vIP )

(
1

n+ 1
−
√
�

)
> (1 +n

√
�) (vIP − vNP ), (26) satisfies for m = n, and the first part of

the proposition follows.

3. If the condition of the proposition is not valid, i.e., (a− c− vIP )

(
1

n+ 1
−
√
�

)
≤ (1 +n

√
�) (vIP − vNP ),

then (1) above implies that (26) is satisfied for some integer m such that m≤ n. Let ms
u denote the smallest

integer that satisfies (26).

It follows that (26) is satisfied for all m≤ms
u and the second part of the proposition follows. □

Proof of Proposition 6. From Corollary 2, for vIP ≥ vsm, �∗IP (m) = 0 and �∗NP (m)> 0. Further, since vsm

is monotonically decreasing in m, it follows that �∗IP (m+ 1) = 0 and �∗NP (m+ 1)> 0, and hence, network is

internally stable and externally unstable. □

Proof of Theorem 4. From Corollary 2, the condition for internal stability of the network reduces to vIP >

vsl , and the condition for external stability of the network translates into vIP > v
s
u. Now, we show that vsl ≤ vsu

as follows:

vsu− vsl =
[(n−m+ 1)−

√
� (m+ 1)] (a− c− vNP )

(n−m+ 1) (m+ 2) +
√
� (m− 1) (m+ 1)

− [(n−m)−
√
� (m+ 2)] (a− c− vNP )

(n−m) (m+ 3) +
√
�m (m+ 2)

=
[(n−m) (n−m+ 1) +

√
� (m+ 1) (2n+ 4−

√
� (m+ 2))] (a− c− vNP )

[(n−m+ 1) (m+ 2) +
√
� (m− 1) (m+ 1)] [(n−m) (m+ 3) +

√
�m (m+ 2)]

≥ 0

Also, from (28), we observe that vsu is decreasing in �, and for �= 0, vsu = vsm. Hence, vsu ≤ vsm is valid for

�∈ (0,1). To summarize, vsl ≤ vsu ≤ vsm. □

Proof of Lemma 4. Substitute �= 1 in Lemma 2 to get (29)− (32) □

Proof of Theorem 5. To prove the theorem it is sufficient to show that the production quantities specified

in Table 3 satisfy simultaneously the response functions (29) and (30) of Lemma 4.

Case 1. vIP < v
s
m∣�=1
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For q∗IP = [(a− c− vIP )− (n−m) (vIP − vNP )]/ (n+ 1) b, we obtain:

fNP = (n−m+ 1) [(a− c− vNP ) +m (vIP − vNP )]/ (n+ 1)≥ 0, and hence,

q∗NP = [(a− c− vNP ) +m (vIP − vNP )]/ (n+ 1) b which satisfies (29).

Similarly, for q∗NP = [(a− c− vNP ) +m (vIP − vNP )]/ [(n+ 1) b], we obtain:

fIP = (m+ 1) [(a− c− vIP )− (n−m) (vIP − vNP )]/ (n+ 1) , and hence,

q∗IP = [(a− c− vIP )− (n−m) (vIP − vNP )]/ (n+ 1) b which satisfies (30).

Case 2. vIP ≥ vsm∣�=1

This case is similar to Case 1 above, and hence, proof is omitted.

It is straightforward to obtain equilibrium price and profit for the producers. □

Proof of Proposition 7. We prove the proposition by comparing �∗N (�< 1) from Corollary 2 with

�∗N (�= 1) from Theorem 5 above.

Case 1. m≤ n− 1

2
From (22) and (33), we note that:

vsm∣�=1− vsm =
a− c− vNP
n−m+ 1

− a− c− vNP
m+ 2

=
(a− c− vNP ) (2m−n+ 1)

(n−m+ 1) (m+ 2)
≤ 0

Therefore, vsm∣�=1 ≤ vsm ≤ vs ≤ (a− c).

1. Consider vNP ≤ vIP ≤ vsm∣�=1. We get:

�∗N (�< 1)−�∗N (�= 1) =
[a− c− vNP +m (vIP − vNP )]

2

4b (m+ 1)
− (n−m) [a− c− vNP +m (vIP − vNP )]

2

b (n+ 1)
2

=
[a− c− vNP +m (vIP − vNP )]

2
(n− 2m− 1)

2

4b (m+ 1) (n+ 1)
2 ≥ 0

2. Consider vsm∣�=1 ≤ vIP ≤ vsm. We observe that �∗N (�< 1) is increasing in vIP . Also, for vIP = vsm∣�=1,

we have:

�∗N
(
�< 1∣vIP = vsm∣�=1

)
−�∗N (�= 1) =

[
a− c− vNP +m

(
vsm∣�=1− vNP

)]2
4b (m+ 1)

− (n−m) [a− c− vNP ]
2

b (n−m+ 1)
2

=

[
a− c− vNP +m

(
a− c− vNP
(n−m+ 1)

)]2
4b (m+ 1)

− (n−m) [a− c− vNP ]
2

b (n−m+ 1)
2

=

[
a− c− vNP
n−m+ 1

]2 [
(n+ 1)

2

4b (m+ 1)
− (n−m)

b

]

=

[
a− c− vNP
n−m+ 1

]2 [
(n− 2m− 1)

2

4b (m+ 1)

]
≥ 0

Hence, for vsm∣�=1 ≤ vIP ≤ vsm, �∗N (�< 1)−�∗N (�= 1)≥ 0.

3. Consider vsm ≤ vIP ≤ vs. We observe that �∗N (�< 1) =
(a− c− vIP ) (vIP − vNP )

b (n−m)
is concave in vIP with

maximum occurring at vIP = vs. Therefore, �∗N (�< 1) is increasing in vIP for vIP ≤ vs. Also, for vIP = vsm,

we have:

�∗N (�< 1∣vIP = vsm)−�∗N (�= 1) =
(a− c− vsm) (vsm− vNP )

b
− (n−m) (a− c− vNP )

2

b (n−m+ 1)
2
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=

(
a− c− vNP −

a− c− vNP
m+ 2

)(
a− c− vNP
m+ 2

)
b

− (n−m) (a− c− vNP )
2

b (n−m+ 1)
2

=

[
(a− c− vNP )

2

b

][
(m+ 1)

(m+ 2)
2 −

(n−m)

(n−m+ 1)
2

]
=

[
(a− c− vNP )

2

b

]
(n− 2m− 1) [(n−m) (m+ 1)− 1]≥ 0

Hence, for vsm ≤ vIP ≤ vsm, �∗N (�< 1)−�∗N (�= 1)≥ 0.

4. Consider vs ≤ vIP ≤ (a− c). We have:

�∗N (�< 1)−�∗N (�= 1) =
1

b

(
a− c− vNP

2

)2

− (n−m) (a− c− vNP )
2

b (n−m+ 1)
2

=

[
(a− c− vNP )

2

b

][
1

4
− (n−m)

(n−m+ 1)
2

]
=

[
(a− c− vNP )

2

b

][
(n−m− 1)

2

4 (n−m+ 1)
2

]
≥ 0

Therefore, for m≤ n− 1

2
, �∗N (�< 1)≥ �∗N (�= 1).

Case 2. m>
n− 1

2
From (23) and (33), we note that:

vs− vsm∣�=1 =
a− c− vNP

2
− a− c− vNP

n−m+ 1
=

(a− c− vNP ) (n−m− 1)

2 (n−m+ 1)
≤ 0

Also from Case 1 above, vsm ≤ vsm∣�=1, and hence vsm ≤ vsm∣�=1 ≤ vs ≤ (a− c).

1. Consider vNP ≤ vIP ≤ vsm. We get:

�∗N (�< 1)−�∗N (�= 1) =
[a− c− vNP +m (vIP − vNP )]

2

4b (m+ 1)
− (n−m) [a− c− vNP +m (vIP − vNP )]

2

b (n+ 1)
2

=
[a− c− vNP +m (vIP − vNP )]

2
(n− 2m− 1)

2

4b (m+ 1) (n+ 1)
2 ≥ 0

2. Consider vsm ≤ vIP ≤ vsm∣�=1. As shown above, �∗N (�< 1) is increasing in vIP for vIP ≤ vs. Hence, from

1 above, it is straightforward to show that �∗N (�< 1)−�∗N (�= 1)≥ 0.

3. Consider vsm∣�=1 ≤ vIP ≤ vs. We observe that �∗N (�< 1) =
(a− c− vIP ) (vIP − vNP )

b (n−m)
is concave in vIP

with maximum occurring at vIP = vs. Therefore, �∗N (�< 1) is increasing in vIP for vIP ≤ vs. Also, for

vIP = vsm∣�=1, we have:

�∗N
(
�< 1∣vIP = vsm∣�=1

)
−�∗N (�= 1)

=

(
a− c− vsm∣�=1

) (
vsm∣�=1− vNP

)
b

− (n−m) (a− c− vNP )
2

b (n−m+ 1)
2

=

(
a− c− vNP −

a− c− vNP
n−m+ 1

)(
a− c− vNP
n−m+ 1

)
b

− (n−m) (a− c− vNP )
2

b (n−m+ 1)
2

=

[
(a− c− vNP )

2

b

][
(n−m)

(n−m+ 1)
2 −

(n−m)

(n−m+ 1)
2

]
= 0

Hence, for vsm ≤ vIP ≤ vsm, �∗N (�< 1)−�∗N (�= 1)≥ 0.
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4. Consider vs ≤ vIP ≤ (a− c). We have:

�∗N (�< 1)−�∗N (�= 1) =
1

b

(
a− c− vNP

2

)2

− (n−m) (a− c− vNP )
2

b (n−m+ 1)
2

=

[
(a− c− vNP )

2

b

][
1

4
− (n−m)

(n−m+ 1)
2

]
=

[
(a− c− vNP )

2

b

][
(n−m− 1)

2

4 (n−m+ 1)
2

]
≥ 0

Therefore, for m>
n− 1

2
, �∗N (�< 1)≥ �∗N (�= 1). □

Proof of Proposition 8. From Corollary 2, the condition for internal stability of the network, i.e.,

�∗NP (m)>�∗IP (m+ 1) , is given as follows:

�b (q∗NP (m))
2
> b (q∗IP (m+ 1))

2⇒ �>

[
q∗IP (m+ 1)

q∗NP (m)

]2
Similarly, the condition for external stability of the network, i.e., �∗IP (m)>�∗NP (m− 1), is given as follows:

b (q∗IP (m))
2
>�b (q∗NP (m− 1))

2⇒ �<

[
q∗IP (m)

q∗NP (m− 1)

]2
Note that q∗NP and q∗IP are independent of �. □

Proof of Corollary 4. From Corollary 2, q∗NP is increasing and q∗IP is decreasing in m. Therefore, it is

straightforward to show that �sl ≤ �su. □
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