REAL CONSUMPTION LEVELS AND THE PUBLIC DISTRIBUTION SYSTEM IN INDIA

BY

Raghbendra Jha K.V. Bhanu Murthy Hari K. Nagarajan Ashok K. Seth

January 1998

Please address all correspondence to:

Hari K. Nagarajan Assistant Professor Indian Institute of Management Bannerghatta Road Bangalore - 560 076 India

Fax: (080) 6644050

Copies of the Working Papers may be obtained from the FPM & Research Office

REAL CONSUMPTION LEVELS AND THE PUBLIC DISTRIBUTION

SYSTEM IN INDIA

```
Raghbendra Jha<sup>1</sup>,
K.V.Bhanu Murthy<sup>2</sup>,
Hari.K.Nagarajan<sup>3</sup>,
Ashok K. Seth<sup>2</sup>
```

- 1. Indira Ganani Institute of Development Research, Mumbai, India
- 2. University of Delhi, Delhi, India
- 3. Indian Institute of Management, Bangalore, India

JEL Classification Number: 053, Q11, Q18.

Keywords: Market Integration, Food Security.

Address for Correspondence:

Prof. Raghbendra Jha, Indira Gandhi Institute for Development Research, Gen. A.K. Vaidya Marg, Goregaon (East), Bombay 400 065 INDIA Fax: +91-22-840-2752 Email <rjha@igidr.ac.in>

ABSTRACT

The policy of allocation of foodgrains under rationing has been very ad hoc in India with allocation being fixed on a 'historical basis'. This paper uses four sets of pooled equations for predicting stable levels of per capita consumption of rice and wheat in physical terms in rural and urban India. Foodgrain demand is estimated for all the States in India. The own-price, cross price and income elasticities of demand are estimated. The model shows a high level of predictive efficiency. Currently, wide variations exist in consumption pattern which, then, cause a variety of mismatches in the concept of subsidizing real consumption through rationing is proposed.

I. INTRODUCTION

The policy of allocation under the public distribution system (henceforth PDS) in India has been the subject of intense debate among economists as well as in policy circles. For instance, Parikh (1994) emphasized the implicit subsidy through rationing. So far, the basis of allocation has been somewhat *ad hoc*. It has been done on some `historical basis' and is incremented, subject to availability, as per demands from states. The revamped PDS, that has been targeted toward the poor, is based on the notion of providing some quantity of cereal so as to provide at least a part of the minimum calorific requirement(20 kg/head/mensem). This forms the conceptual basis for rationing. In this sense, the role of rationing is really one of subsidizing real consumption. In the present paper we evaluate the current policy of allocation on the basis of this notion of providing a real consumption subsidy.

STATE LEVEL CEREAL DEMAND- RURAL AND URBAN

The National Sample Survey (henceforth NSS) 45TH Round (July 1989-June 1990), 47TH Round (July 1991- December 1991) and 48TH Round (January 1992-December 1992) contain data on average monthly per capita expenditure (weighted average that accounts for the distribution of expenditure amongst different MPCE classes), quantity and value of rice and wheat consumed per person in 30 days. We first estimated the own price elasticity of demand, the cross elasticity and the income elasticity non-parametrically. However, the data points were very few (three) so that the results were inefficient. Hence, we pooled the data and used appropriate dummies to capture state level differences.

NSS give data for 15 states and 3 regions that combine smaller states and Union Territories. Thus, the sample size is 18x3. The implicit price is obtained by dividing the value of expenditure by the quantity of rice or wheat purchased. The average monthly per capita expenditure (MPCE) is deflated by the consumer price index (CPI) and taken to be an indicator of real income.

II. THE MODEL

The demand model used is a double-log function so that estimation of elasticities becomes straightforward.

 $Log Q_{X}^{U} = b_{1}LogP_{X} + b_{2}LogP_{Y} + b_{3}LogI + V_{1}D_{c}LogP_{X} + V_{2}D_{c}LogP_{Y} + V_{3}D_{c}LogI + V_{3$ wT + state level intercept and trend dummies + ϵ_t (1) where Q_{x}^{u} = per capita consumption of X (rice/wheat) in a month, A_0 = minimum consumption level, b₁ = partial own price elasticity, b₂ = partial cross elasticity (w.r.t. substitute cereal Y), b₃ = partial income elasticity (w.r.t. (I) money income), $D_c = dummy$ for major constairy Status of the coreal, V_1 = difference in B_1 for major consuming States (compared to the national average), V_2 = difference in B_2 for major consuming States (compared to national average), V_1 = difference in B_1 for major consuming States (compared to national average), = growth in minimum consumption level of rice or wheat, w Т = time trend, e_t = error term. and $Q_X^N = (Anti(Log Q_X) * P^R + Anti(Log Q_X) * P^U) * 12....(2)$ = (superscript) urban, V = (superscript) rural, U N = (superscript) national and P = population. The predicted value of Log Q can be had from equation (1). Its antilog gives the estimate of per capita per mensem demand for the particular cereal, rice or wheat, which when multiplied by either rural or urban population of India, gives the demand for the particular region. Equation (2) gives the total demand at the national level. Consumption in each state can be obtained by constructing individual equations from the aggregate equation since the difference in intercept as well as the difference in slope for major consuming states are known. Four equations, pooling all

states, were estimated: one each for each cereal and one each for each sector- rural and urban.

III. STABLE LEVELS OF CONSUMPTION

To return to the theme of state level estimates, it would be appropriate to recapitulate the basic issue. At the state level, NSS data reflect the monthly per capita expenditure on cereals, amongst other things. We have used this rich source to estimate the true levels of consumption in different states. The methodology is to estimate demand equations of the type given by (1). The main interest here lies, however, in estimating the levels of consumption per capita per month on the hypothetical basis that real income remains

and prices is used.

In general, the demand function is defined as

 $D_x = f(P_x, P_s, P_c, I)$

 D_x = demand for commodity x

 P_x = price of commodity x

P_s = price of substitutes

 P_c = price of complements

I = money income

The demand function is homogeneous of degree zero if the following relation holds:

 $(\partial D_x / \partial P_x) * P_x + (\partial D_s / \partial P_s) * P_s + (\partial D_x / \partial P_c) * P_c + \partial D_x / \partial I * I = 0$

Dividing throughout by D_x , this relationship gets converted into an additive function between all the elasticities of demand, namely, the own price elasticity, elasticity with respect to price of substitutes and/or price of complements. This implies:

 $\eta_{x} + \eta_{s} + \eta_{c} + \eta_{I} = 0$

where η_i are the respective elasticities. This can be tested with the usual F test. Such a test would reveal whether the assumption of the degree of homogeneity being zero is true. If the test validates the restriction of the degree of homogeneity being zero, then the implication is that the levels of consumption remain

constant if all prices increase along with an increase in the money income, such that real income remains constant. This is in keeping with Engel's law where the levels and patterns of real consumption depend upon real income. The advantage with verifying such a hypothesis of zero degree homogeneity is that stable levels of consumption can be predicted. In the subsequent analysis of allocation and lifting from PDS, these stable levels of consumption have been used as a basis for making comparisons. The basic assumption in this study is that in the given three years the average real income is constant. Therefore, stable levels of consumption can be estimated and can be compared with the actual levels of allocation and lifting.

IV. CONSUMPTION LEVEL ESTIMATION - METHODOLOGY

Regression equations for the four data series relating to demand for superior cereals were estimated by using slope, intercept and trend dummies. One (intercept) dummy each for 18 major consuming states were used to pick up inter-state differences. Similarly, in the initial estimates, 18 trend dummies were also included. Apart from this, a dummy each for major wheat consuming and major rice consuming states was formed. This serves the purpose of identifying the difference between the coefficients at the all-India level and the coefficients for major consuming states of either rice or wheat. For a rigorous testing of the zero degree homogeneity condition, own price, price of substitutes, price of complements and income need to be included as explanatory variables.

Some of the trend variables were found to be insignificant in the initial estimation and were dropped. We also tried to incorporate income inequalities. This was done in the light of the argument of Kumar, Rosegrant and Boulis (1994), who emphasized the significance of income inequalities in the determination of consumer demand. Dummies were created for groups of states amongst the sample 18, which happened to fall in the same quartile range of monthly per capita consumption expenditure. These dummies were used to determine the differences in the coefficients for these four groups in respect of the income variable. Once again, the results were not

```
significantly different from the initial estimates, which took income
as a gross variable. Neither were they illuminating in terms of
different signs for high as opposed to low income/expenditure
classes. The final estimates therefore, were based on the original
model in which consumption expenditure was taken in money terms and
as a single variable.
DEGREE OF HOMOGENEITY
For verifying the hypothesis of the degree of homogeneity being zero,
two tests were conducted. The first was a single linear restriction
on all the six coefficients of own price, price of substitutes and
income, that is,
Test 1. (Major consuming states)
h^{*} + h^{2} = h^{*} + h^{*
with dummy Dr for rice (rural and urban) equations
and dummy Dw for wheat (rural and urban) equations.
The second test was a single linear restriction on only three of the
six coefficients of own price, price of substitute and income, that
is
Test 2.
(All India)
```

VI. RESULTS

All pooled equations have a high explanatory power. The minimum R^2 is 0.98 which is in the case of rural wheat consumption. In all other cases, it exceeds 0.99. (Tables 2.1 to 2.4).

Urban Rice:

The own elasticity bears the right sign at the all India level and is large (-1.81 in Table 2.1). For the major rice consuming states, The interaction dummy is significant and positive at 1.48. For them then, the own price elasticity is -.33 (given by -1.81 +1.48). This is expected behavior. The price of the substitute cereal, wheat, bears the right sign at the all India level and is highly elastic at +1.66. For the country as a whole, income elasticity is -0.40, but for the major consuming states, it is + 0.49 (given by .89 - .40).

Most of the intercepts are significant, with the sign varying in different cases. The only states whose intercepts are not significant are Kerala and Tamilnadu. The noticeable factor is that there is a definite negative trend which is both statistically significant and numerically weighty. This points to a decline in rice consumption in Haryana, Orissa and Rajasthan, at the rate of 19.9%, 16.4% and 14.3% per annum respectively. The reverse trend can be seen in urban rice consumption. However, interestingly, these are independent trends, because the states in which the decline is apparent, do not match the states in which wheat consumption has been rising. A more detailed analysis of the changes in the real income levels and a sub-state level study for regional patterns may reveal a shift towards superior cercal substitutes. Of the two tests, the null hypothesis of zero degree homogeneity is accepted only for the major consuming states (Table 2.1).

Urban Wheat:

Results for this are reported in Table 2.2. Wheat consumption in urban areas has an overall own price elasticity of -0.65. The corresponding elasticity for major consuming areas is less but nevertheless, bears the right sign, and stands at -0.27 (given by -.65 + .38). The difference, however, is significant only at the 10% level. At the national level, the price of rice as a substitute bears a negative sign and is significant, with its value being -0.93. The corresponding elasticity is 0.16 for the major consuming states (given by 1.09 - .93). This means that rice is definitely a substitute in wheat consuming areas and, significantly, its price elasticity is low. The income elasticity is positive, weighty and significant for the all India level, and stands at around 0.6. On the other hand, it is positive, significant but small for major consuming states at 0.15 (given by 0.59 - 0.44). The states that have an intercept insignificantly different from zero are Gujarat, Madhya Pradesh, Maharashtra, Orissa and Punjab. The upward trend in urban wheat consumption is apparent from the three significant trend variables relating to Tamilnadu, North East and Southern states. This is direct evidence of change in consumption patterns in

major rice consuming states. The growth rates are also fairly high. It may be expected that the total cereal intake in these states has increased since none amongst them figure in the declining trend of rice consumption. The F-test for verifying the restriction regarding degree of homogeneity follows the same pattern of being accepted for the major consuming states and rejected at the all India level (Table 2.2).

Rural Rice:

Own price elasticity at the all-India level is -0.54 and is significant. There is no effective difference between the elasticity of major consuming states and the all-India magnitude. Wheat price elasticity is positive and almost equal to unity. It is significant at both levels, but is marginally negative for the major consumirastates. The income elasticity of demand in general is insignificant, but bears a negative sign. This virtually means that rural rice consumption in major consuming states has an income elasticity of demand which is around 0.75, and is highly significant. The intercepts of Bihar, Kerala, Punjab West Bengal and the North-East are not significant. There is an unmistakable trend of decline in rural rice consumption. Significant falling trend rates are observed in Gujarat, Haryana, Kerala, Madhya Pradesh, Maharashtra, Uttar Pradesh Rajasthan and the north-west. However, unlike the consumption of urban rice, there is a noticeable substitution towards wheat consumption at least in states like Orissa, Rajasthan and the North-West. Degree of homogeneity is zero at the all-India level (Table 2.3).

Rural Wheat:

Rural wheat consumption is negatively related to own price at both levels but is significant only for major consuming states. Its value is -1.06. Rice as a substitute bears a negative sign and is not significant at the all India level but is positive and stands at 0.9 (given by 0.0 +0.9) for the major consuming states. Income in this case, is not significant at the 5% level but is significant at the 10% level for both the all India and the major consuming states. The elasticities are respectively 0.17 and 0.42 (given by 0.17 + 0.25).

The intercepts are highly significant for all except Madhya Pradesh and West Bengal. As pointed out, Orissa, Rajasthan and the North West, show significant growth rates which are respectively, 0.3, 0.25 and 0.24. It must be kept in mind that these consumption levels are per capita measures. It is significant that, like rural rice, rural wheat also displays zero degree of homogeneity at both levels. This implies that in general the consumption of cereals in rural areas conforms to real income levels (see Table 2.4).

These demand equations were used for predicting the stable consumption levels generated on the hypothetical basis that if real income remains constant the levels of demand too remain constant. This is an outcome of the degree of homogeneity being zero, which has been verified almost universally at all levels, and for both rural and urban areas. The predictive efficiency of the model and the specific equations has been tested on the basis of the ratio of actual levels of consumption to such predicted levels of hypothetical consumption. The results of this test show that the maximum deviation is in the case of rural wheat consumption in Haryana, in 1991, where actual consumption is 42% above hypothetical consumption. This however appears to be an outlier. In most cases, the ratio is very close to unity. On the lower side, the variation does not exceed 20%, which once again, is for rural wheat in Punjab in 1990. It must be pointed out that in the other three series, generated by the model, other than rural wheat, the variation is much less. In general, it does not exceed 6% on either side. The deviations in general do not follow any pattern, neither in favor nor against the major consuming states. They can well be taken to be normally distributed (Table 1).

VII. EVALUATION OF PDS: ALLOCATION AND LIFTING

Data for allocation and lifting was available for a fairly long period. However, the limitation of demand data restricts the study of such an evaluation to the three years 1990, 1991 and 1992. The earlier exercise, apart from illuminating questions relating to

consumption, serves the purpose of providing a basis for evaluating the PDS.

Monthly allocation and lifting data was averaged over the 36 months relating to these three years. The data was available consistently for 25 states and 6 union territories. The following indices were developed for purposes of comparison and evaluation.

1. MPCC_i = Monthly per capita consumption (in tonnes) of ith State. 2. R_mC = MPCC_i / μ_c = Ratio of consumption of ith State to average consumption per capita.

3. $R_aC_i = A_i / MPCC_i = Ratio of allocation of ith State to its monthly consumption per capita.$

4. $R_1C_i = L_i / MPCC_i = Ratio of lifting of the ith State to its monthly concumption per capito$

5. $R_aA = R_aC_1 / \mu_a = Ratio of R_aC_i$ to its own average.

6. $R_1A = R_1C_1 / \mu_1$ = Ratio of R_1C_1 to its own average.

7. $D_iAC = R_aA / R_mC = Distortion$ index of allocation of ith State with respect to monthly consumption pattern.

8. DiLC = R_1A / RmC = Distortion index of lifting of ith State with respect to monthly consumption pattern.

While we admit that PDS has a rationale for subsidizing consumption, in its functioning, it should complement the consumption needs and patterns. The above predicted levels of per capita consumption represent stable levels based on tastes and socio-cultural needs. The data on which the above estimates were made pertain to total expenditure on food grains, irrespective of whether they are purchased from the open market or rationing. Therefore, both allocation and lifting would form a certain proportion of this level of consumption. Conclusions drawn from implicit subsidies in money terms, in other studies, do not clarify the basic role of PDS in respect of real consumption. The quantity data of allocation and off-take can conveniently be juxtaposed with the quantitative estimates of per capita consumption. A rational policy of allocation needs to be geared to these fundamental consumption patterns Any amount of subsidy in money

terms cannot serve the purpose if the outcome of rationing does not complement these basic consumption patterns. The above specified indices seek to delve into the crucial question of whether allocation and lifting from PDS serve this purpose. In this sense, any deviation from the patterns of consumption and demand are distortions and need corrections (Tables 3 & 4).

Urban Rice:

The third and fourth indices simply provide an insight into the extent of dependence of the consumer on the PDS. The second index is a measure of the deviation from the average pattern of consumption. For instance, this index varies from a low of 33% to a high of 180% in the case of urban rice demand. The proportion of allocation is extremely low in the case of Pihar and happens to be only 2 2% of the consumption level, although its consumption is very near to the average. In terms of lifting the ratio is around 1.1%. On the other hand, Jammu and Kashmir receives 87% in excess of the average consumption, while the lifting is almost equal to its per capita consumption. This deviation is further exaggerated when the percentage of allocation and lifting are seen as a ratio to their own average. In terms of allocation, then, J&K receives four times the average and the lifting is three times the average. Many other states also display such proportions. The situation of Bihar does not change significantly even if such a measure is adopted. The average per capita consumption is 4.28 kg. The average ratios of allocation and lifting are 40 and 29% respectively. There is a remarkable equivalence if the coefficients of variation of these two ratios are observed. Yet, the CV of per capita consumption is lower. This, in itself, implies that PDS quantities deviate to a greater extent. The equivalence however breaks down when the seventh and eighth indices are observed. Allocation has a coefficient of variation of 1.38 while that of lifting is only 1.22, which is still greater twice that of the per capita consumption (Table 8.1 & 8.2). Urban Wheat:

The average wheat consumption is 4.25 kg. In spite of excluding Pondicherry, which is an outlier, the average ratio of allocation is

5.86. This is mostly on account of small states and union territories. Here again, Bihar receives only 6.3% and lifts only 5.3% of its per capita consumption. Once again, the coefficients of variation are similar for both the allocation and lifting ratios and are much higher than the CV of per capita consumption. Bihar gets only 1%, while its allocation and lifting are considered with respect to the average. Nagaland and Goa recieve almost twice the average, even if Daman and Diu, which is an outlier, is ignored. Surprisingly, lifting in Goa even exceeds this high ratio and so is the case with Nagaland. The CV of the distortion index of allocation exceeds that of the index of lifting (see Table 6.1 & 6.2).

Rural Rice:

The average per capita consumption is 4.5kg., while the average allocation and lifting ratios are 31% and 25% respectively. The deviation between the CVs of allocation and lifting as compared to per capita consumption is less than that in the case of urban rice and wheat. The CV of the allocation ratio is less than that of the lifting ratio, but when they are considered with respect to the consumption pattern, the converse occurs. Uniformly, Bihar appears at the lowest end. Lakshadweep and Jammu & Kashmir receive more than the per capita consumption and the lifting is much less. With respect to the average, Jammu & Kashmir, Goa, Nagaland, Daman and Diu, Delhi and Meghalaya receive a higher allocation. Rajasthan receives allocation equal to the average, but in terms of the distortion indices, the two indices are 41 and 25 respectively. A similar switching of CVs as in the previous case, is noticeable as between the ordinary ratios and the distortion indices of allocation and lifting (Table 7.1 & 7.2).

Rural Wheat:

The average consumption is 3.3kg. The CV of the allocation ratio is higher than that of lifting and the same pattern is seen as for the distortion indices. In spite of eliminating outliers, the average allocation and lifting ratios are abnormally high. This is due to the small states. Bihar continues to trail behind with

5.5 and 7.3% allocation and lifting, compared to the average. The CV of allocation and lifting is more than two times that of the per capita consumption (Table 5.1 & 5.2).

VIII. POLICY IMPLICATIONS

The following varieties of mismatches are illustrative of the irrationalities in the PDS system.

1. Allocation in many cases is in excess of the absolute level of per capita real consumption per month (PCC).

2. Allocation as a ratio of the PCC, in certain states goes down to 2.2%.

3. Similar incongruencies exist in respect of lifting.

4. Also, the gap between allocation and lifting is glaring in many cases. This also points out towards misallocation.
5. There are differences between the allocation to consumption ratio as between urban to rural areas.

There is no doubt that the quantitative interventions in the real consumption and demand patterns caused due to allocation and lifting are significant. To say the least, a thorough look into the pattern of allocation is a must. Even though there may be instances where lifting appears to be a greater source of distortion, it cannot be forgotten that lifting is circumscribed by allocation. A correction in the policy of allocation is imperative and lifting would follow suit. A study towards this end would be worthwhile and is capable of yielding concrete criteria for overhauling the allocation pattern so as to make PDS rational and viable complement of market demand, while retaining the variations in tastes and sociocultural patterns in consumption.

The following formula can form the basis for allocation: F_s^t = Food surplus (less emergency stock, wastage and open sale stock)

Ν

 $F_d^{t} = \sum F_d^{s} = Total food demand over N States.$

 $F_d^s = Pop(s) * PCC(s) = Food demand in s th State Pop(s) = Population of s th StatePCC(s) = Per capita real consumption of s th State in physical units.$

 $F_s^t / F_d^t = ARAR = Adjustable Rationing Allocation Ratio Allocation to each State = ARAR* <math>F_d^s$

The ARAR can be adjusted according to the food surplus every cropping season. The sub-allocation can be done at the State level on a pro-rate basis.

IX. CONCLUSIONS

In this paper we have examined the rationale for the current allocation pattern of rice and wheat through the PDS in India and found it to be wanting in at least one important respect - the allocation pattern appears to ignore the structure of consumption demand in the country. An alternative formulation is also suggested in the paper.

REFERENCES

Acharya. S.S., and N.L.Agarwal (1994) Agricultural Prices analysis and policy. New Delhi: Oxford and IBH.

Bhalla. G.S. (ed) (1994) Economic Liberalization and Indian Agriculture. New Delhi: Institute for Industrial Development Studies.

Dev. S.M. and M.H. Suryanarayana (1991) "Is PDS urban biased and pro-rich?", Economic and Political Weekly, 12 Oct., P.2357-66.

George. P.S. (1994) "Food Security in South Asia", April, Economic and Political Weekly, P. 1092-04.

Kumar. Praduman, et al.(1994) Demand for foodgrains and other foods in India. Delhi, Washington: I.A.R.I.& I.F.P.R.I.

Parikh. K.S.(1994) "Who gets how much from PDS - How effectively does it reach the poor?" Sarvekshana, Jan-Mar. pp. 1-70.

Vyas. V.S. (1994) "Agricultural Policies for the Nineties: Issues and Approaches", June, Economic and Political Weekly, P. A-54 - A-63.

TABLE	1: RATIO OF A	CTUAL LEVELS OF C	ONSUMPTION TO	PREDICTED LEVELS
STATE	URBAN	URBAN	RURAL	RURAL
	RICE	WHEAT	RICE	WHEAT
ANDHRA	PRADESH			
1990	.942901	1.02834	1.05107	1.06210
1991	1.03408	.945637	.925379	.986149
1992	1.02561	1.02834	1.02812	.954754
ASSAM				
1990	1.05893	.977547	1.03004	.834275
1991	.998471	1.04646	.973630	1.11431
1992	.945795	.977546	.997135	1.07569
BIHAR				
1990	.974420	.971906	.949811	.950054
1991	.960797	1 05865	1.03549	976798
1992	1.06812	.971908	1.01676	1.07802
JUJARA'			2.02070	1.0,000
1990	.924869	1.04698	.967438	.695494
L991	.971262	1.02255	1.06845	.760171
1992	1.11323	.934063	.967439	.753291
L992 HARYAN		. 334003		. / 33232
1990	.974459	1.00054	.967767	1.28893
1991	1.05311	.991070	1.06772	1.42805
L991 L992	.974457	1.00846	.967766	1.23419
		1.00040	. 907700	1.43413
KARNAT.		1 02016	1.02375	.837542
1990	.984333	1.03016	.943506	1.12240
1991	1.01150	.942314		1.06377
1992	1.00437	1.03015	1.03529	1.00577
KERALA			1 01000	.857468
1990	1.04016	1.03108	1.01666	1.07264
1991	.929573	.940622	.967486	
1992	1.03423	1.03108	1.01666	1.08724
	PRADESH			004530
1990	.999228	1.02280	.964852	.904532
1991	.978452	.945979	1.07418	.971916
1992	1.02281	1.03354	.964852	1.13749
MAHARA	SHTRA			
1990	1.05798	.992515	.987120	.923531
1991	.951487	1.00459	1.02627	1.02409
1992	.993387	1.00294	.987118	1.05732
ORISSA				
1990	.983694	.999046	1.04087	.961591
1991	1.03343	1.02648	.923012	1.08148
1992	.983695	.975134	1.04087	.961591
PUNJAB				
1990	1.09482	.993625	.992210	.795706
	.915945	1.04293	1.00057	.969423

1992	.997221	.964985	1.00727	1.29638
RAJASTI	han			
1990	.953958	.973456	.991628	1.05593
1991	1.09886	1.00253	1.01695	.896865
1992	.953958	1.02467	.991631	1.05593
TAMILN	ADU			
1990	1.09100	1.00407	1.07961	.877765
1991	.972043	.991910	.926004	1.24578
1992	.942950	1.00407	1.00028	.914495
UTTAR	PRADESH			
1990	1.01485	.961584	1.01600	.950297
1991	1.01119	.994402	.968747	1.02142
1992	.974464	1.04581	1.01600	1.03023
WEST B	ENGAL			
1990	1.02677	1.04988	.996916	1.06356
1991	1.00681	.978828	1.00722	1.03222
1992	.985780	.977759	1.01945	.879013
NORTH	EASTERN ¹			
1990	1.00756	1.04487	.973882	1 10213
1991	.998467	.915964	.960169	1.00114
1992	.994020	1.04487	1.06941	.906302
NORTH	WESTERN ²			
1990	1.06062	.922578	1.02571	.953138
1991	.926846	1.11089	.950490	1.10075
1992	1.01726	.975720	1.02571	.953139
SOUTHE	RN ³			
1990	.952417	.989558	1.07044	.890141
1991	.980364	1.02121	.938158	1.13748
1992	1.07099	.989559	.995775	.987637

Notes:

1 Arunachal, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura.

2 Jammu & Kashmir, Himachal Pradesh, Chandigarh and Delhi.

3 Andaman & Nicobar, Dadra & Nagar Haveli, Goa, Lakshdweep, Daman & Diu and Pondicherry.

TAB	LE 2.1: EQU	ATION FO	R CEREAL DE	MAND AT STATE	LEVEL (URBAN -RICE)
1			(Qd) (URBA)		
1	R**2			-WATSON 2.896	35936
NO.	LABEL	LAG COE	FFICIENT	STAND.ERROR	T-STATISTIC
1	LPUR	0 -1.8	18346	.2254321	-8.066048
2	DPUR	0 1.4	86862	.3469340	4.285719
3	LPUW	0 1.6	67045	.2855751	5.837500
4	DPURW	0 -1.7	57236	.3453680	-5.088012
5	LMCPU	040	66365	.2446763	-1.661937
6	DMCPUR	0.89	92904	.2489522	3.612301
7	D1	0.16	59916	.1013193	1.648172
8	i.u	0.23	<i>4</i> ک 1 כ 5	.91200C0F-01	2 5-0618
9	D3	011	98631	.6645213E-01	-1.803751
10	D4	0 4.1	40785	1.173220	3.529419
11	D5	0 6.4	26024	1.750725	3.670494
12	D6	031	32478	.8683011E-01	-3.607594
13	D7	080	84648E-01	.1059533	7630391
14	D8	0 4.5	33984	1.175784	3.856137
15	D9	0 4.3	22934	1.197395	3.610284
16	D10	0 4.9	92824	1.785621	2.796128
17	D11	0 3.5	49187	1.253424	2.831594
18	D12	0 8.3	93379	2.697835	3.111154
19	D13	0.18	21569E-01	.8062248E-01	.2259380
20	D14	0 4.2	10286	1.166490	3.609362
21	D15	024	66610E-01	.6362470E-01	3876811
22	D16	0.40	92938	.9429086E-01	4.340758
23	D17	0 4.2	02691	1.219089	3.447403
24	D18	020	81525	.1144936	-1.818026
25	D5T	019	96336	.5972839E-01	-3.342357
26	D10T	016	39756	.6268314E-01	-2.615945
27	D12T	014	32150	.5620439E-01	-2.548110
* Z	ERO DEGRE	E OF H	OMOGENIETY:	1. MAJOR CONS	UMING STATES
F(1	27) = .693	3950 SIG	NIFICANCE L	EVEL .412317	4

I

2. ALL INDIA: F(1,28) = 25.22332 SIGNIFICANCE LEVEL .2609414E-04 where LPUW= log of price of urban wheat, Dpuw = Log of price of urban wheat*Dummy for major wheat consuming states, LPUR = Log of price of of urban rice (substitute grain), DPUWR = Log of price of urban rice*Dummy for for major wheat consuming states, LMCPU =Log of monthly per capita expenditure (urban)*Dummy for major wheat consuming states, D1,...,D18 = state intercept dummies, D1T,...,D18T = State trend dummies

TABLE 2.2: EQUATION FOR CEREAN	DEMAND AT	STATE	LEVEL	(URBAN	-WHEAT)
--------------------------------	-----------	-------	-------	--------	---------

DEPENDENT VARIABLE LOG (Qd) (URBAN -WHEAT)						
		.99561760 DURBIN-WATSON 3.03310633				
		LAG COEFFICIENT STAND.ERROR T-STATISTIC				
1	LPUW	06510694 .2047921 -3.179172				
2		0 .3810027 .2767251 1.376827				
3	LPUR	09318726 .3479890 -2.677880				
4		0 1.094992 .3961780 2.763889				
5		0 .5903437 .1007577 5.859046				
6		04391455 .2198285 -1.997673				
7	DI DI	0 -1.24107				
16	D10					
		0 .1487939E-01 .8175530E-01 .1819991 1 018760 0086536 1.05				
1						
18		0 1.429722 .9707075 1.472866				
19	D13	0 -7.304711 2.097234 -3.483021				
20	D14	0 1.349886 .9326095 1.447429				
21	D15	0 .2771742 .9776661E-01 2.835060				
22	D16	0 -17.49890 4.291542 -4.077533				
23	D17	0 1.120960 .9770887 1.147245				
24	D18	0 -19.37951 4.380118 -4.424427				
25	DIT	0.1448980.7889854E-01 1.836510				
26	D2T	0 .1591778 .5828867E-01 2.730854				
27	D3T	0 .2951175 .7241454E-01 4.075390				
28	D6T	0.2385882 .6314825E-01 3.778224				
29	D7T	0 .1502193 .6053471E-01 2.481539				
30	D13T	0 .1629864 .5597724E-01 2.911655				
31	D16T	0 .3509034 .9180936E-01 3.822088				
32	D18T	0 .3613406 .8355039E-01 4.324823				
* Z	ERO DEGI	EE OF HOMOGENIETY TEST: 1. MAJOR CONSUMING STATES				
F(1	F(1,22) = .1887880 SIGNIFICANCE LEVEL .6681592					
2.A	2.ALL INDIA F(1,23) = 13.59030 SIGNIFICANCE LEVEL .1221219E-02					
whe	re LPUW	= Log of price of urban wheat, DPUW = Log of price of				
	Urban wł	eat*Dummy for major wheat consuming states, LPUR = Log				
	of pric	e of urban rice (substitute grain), DPUWR = Log of price	!			

of urban rice*Dummy for major wheat consuming states, LMCPU = Log of monthly per capita expenditure (urban)*Dummy for major wheat consuming states, D1,...,D18 = state intercept dummies, D1T,..., D18T = State trend dummies.

Table	2.3: EQ	UAT	ION FOR CEREAL D	EMAND AT STATE	LEVEL (RURAL -RICE)	
DEPEN	DENT VAR	IAE	LE LOG (Qd) (RU	RAL -RICE)		
RBAR*	RBAR**2 .99727615 DURBIN-WATSON 2.96715258					
NO.	LABEL	LA	G COEFFICIENT	STAND. ERRC	R T-STATISTIC	
1	LPRR	0	5403501	.2134593	-2.531396	
2	DPRR	0	.1762175	.2470313	.7133406	
3	LPRW	0	1.021419	.2207203	4.627663	
4	DPRRW	0	-1.129530	.2359691	-4.786770	
5	LMCPR	0	1237082	.1878845	6584269	
6	DMCPRR	0	.7487157	.1924624	3.890193	
7	D1	0	1593109	.6937245E-01	-2.296457	
8	2ח	n	- 1652318F-01	60552175-01	- 2720752	
9	D3	0	3086767	.6034357E-01	-5.115321	
10	D4	0	2.352933	1.042137	2.257797	
11	D5	0	4.068329	1.071041	3.798482	
12	D6	0	9464693	.6054012E-01	-15.63375	
13	D7	0	.3960253	.9200284	.4304490	
14	D8	0	4.764389	1.517449	3.139736	
15	D9	0	4.713486	1.685534	2.796434	
16	D10	0	1.473588	1.322708	1.114069	
17	D11	0	.3254105	1.138745	.2857623	
18	D12	0	5.382233	2.297166	2.342989	
19	D13	0	3070860	.6187693E-01	-4.962851	
20	D14	0	6.681980	2.922762	2.286187	
21	D15	0	1313062E-01	.5359597E-01	2449927	
22	D16	0	7742549E-01	.6009192E-01	-1.288451	
23	D17	0	9.677025	2.390235	4.048567	
24	D18	0	6760951	.7009091E-01	-9.645973	
25	D4T	0	1234694	.7417411E-01	-1.664589	
26	D5T	0	2559189	.8052051E-01	-3.178306	
27	D7T	0	4882721E-01	.4593834E-01	-1.062886	
28	D8T	0	1196444	.6956478E-01	-1.719899	
29	D9T	0	1359840	.7211612E-01	-1.885625	

30 D10T 0 -.4616920E-01 .4553586E-01 -1.013909 31 D12T 0 -.1867223 .6487494E-01 -2.878189 32 .7516136E-01 -1.598813 D14T 0 -.1201689 .5440112E-01 -2.862450 33 D17T 0 -.1557205 * ZERO DEGREE HOMOGENIETY TEST: 1. MAJOR CONSUMING STATES F(1,21) = 2.372100 SIGNIFICANCE LEVEL .1384548 2. ALL INDIA F(1,22) = 1.126846 SIGNIFICANCE LEVEL .2999639 where LPRR = Log of price of rural rice, DPRR = Log of price of rural rice*Dummy for major rice consuming states, LPRW = Log of price of rural wheat (substitute grain), DPRRW = Log of price of rural wheat*Dummy for major rice consuming states, D1 D19 - State intercent dummine D1 - - -SI -1 -7 Dummies.

TABLE	2.4: EQ	UATI	ION FOR CERE	AL DEMAND AT ST	TATE LEVEL (RURAL - V	VHEAT)
DEPENI	DENT VAR	IABI	LE LOG (Qd)	(RURAL - WHEAT))	
RBAR**	*2 .!	9811	12923 DURBI	N-WATSON 1.860)65420	
NO.	LABEL	LAG	G COEFFICIE	NT STAND. ERF	ROR T-STATISTIC	
1	LPRW	0	1533865	.2431563	6308146	
2	DPRW	0	-1.062605	.3647601	-2.913161	
3	LPRR	0	3168371	.3742343	8466277	
4	DPRWR	0	.9064231	.5309067	1.707312	
5	LMCPR	0	.1759491	.1222791	1.438914	
6	DMCPRW	0	.2531634	.1573396	1.609026	
7	D1	0	-1.774171	.2108778	-8.413263	
8	D2	0	7647052	.1840630	-4.154585	
9	D3 .	0	1.543654	.1830061	8.434989	
10	D6	0	3048400	.1837375	-1.659106	
11	D7	0	3985479	.1978089	-2.014812	
12	D8	0	.1310726	.1424001	.9204526	
13	D9	0	6894751	.1501874	-4.590765	
14	D10	0	-9.451778	4.001858	-2.361847	
15	D11	0	.2375507	.1459446	1.627677	
16	D12	0	-8.746721	4.884085	-1.790862	
17	D13	0	-1.294744	.1878064	-6.894035	
18	D14	0	.3561427	.1377201	2.585989	
19	D15	0	3427966E	.1625815	2108460	
20	D16	0	-1.626255	.1808463	-8.992468	
21	D17	0	-12.14158	6.773541	-1.792502	
22	D18	0	.2925177	.2132038	1.372010	
23	DIOT	0	.3065489	.1377353	2.225637	
24	D12T	0	.2576188	.1395737	1.845755	
25	D17T	0	.2395180	.1355442	1.767084	
*ZERO	DEGREE (OF H	HOMOGENIETY	TEST: 1. MAJOR	CONSUMING STATES	
F(1,29) = .6364540 SIGNIFICANCE LEVEL .4314822						
2. ALI	, INDIA					
F(1,3	30) = 3	1.06	5424 SIGNI	FICANCE LEVEL	.3102313	

where LPRW = Log of price of rural wheat, DPRW = Log of price of rural wheat, LPRR = Log of price of rural rice (substitute grain), DPRWR = Log of price of rural rice*Dummy for major wheat consuming states, LMCPR = Log of monthly per capita expenditure (rural)*Dummy for major wheat consuming states, D1,...,D18 = State intercept dummies, D1T,...,D18T = State trend dummies.

TABLE 3	: STABLE PRED	CTED DEMAND FOR	CEREAL AT STATE	LEVEL
		(Per Capita	a/ Month)	
		(in kild	ograms.)	
	URBA	AN	RU	JRAL
ANDHRA	PRADESH			
	RICE	WHEAT	RICE	WHEAT
1990	10.8495	1.07941	11.9687	.225967
1991	10.2410	.941165	13.2162	.223090
1992	10.0038	.865470	11.9636	.209478
ASSAM				
1990	10.4256	1.32986	13.0481	.587336
1901	17.1871	1 251		- 7 • -
1992	10.7740	1.37078	12.6362	.557782
BIHAR				
1990	7.50190	6.22488	9.03338	5.97861
1991	7.06705	5.71485	8.75914	5.46908
1992	6.62844	6.66730	8.55662	5.28749
GUJRAT				
1990	2.31384	5.47289	2.08799	6.31206
1991	2.04888	5.54495	2.06842	5.89341
1992	2.20081	5.40649	2.17068	5.17728
HARYANA				
1990	1.02621	9.02509	1.04364	9.58162
1991	.949566	8.78848	.974034	8.45907
1992	.995426	8.44851	.723315	9.56094
KARNATK	A			
1990	6.08534	1.56287	4.81564	.931297
1991	6.34703	1.80407	5.23579	.899859
1992	5.89425	1.75702	4.82956	.846050
KERALA				
1990	8.46982	1.03775	8.83281	.897993
1991	9.34838	1.18007	9.76758	.885663
1992	8.41209	.989255	8.95084	.827781

	PRADESH			
1990	3.79293	7.30345	6.11493	6.50060
1991	3.68950	7.20946	6.02318	6.11164
1992	3.85213	7.09215	6.32221	5.36269
MAHARAS	SHTRA			
1990	3.63901	4.61454	2.94797	2.60955
1991	3.16347	4.61878	2.76731	2.72436
1992	3.31190	4.50677	2.83654	2.26988
ORISSA				
1990	11.9651	2.45234	14.9875	.551170
1991	10.9151	2.28938	17.0637	.748972
1992	10.7757	2.58426	14.8914	.935949
כ - ד ז קזת				
1990	.858592	8.40357	.645025	14.2515
1991	1.32104	8.05420	.839518	11.3057
1992	.782174	8.31101	1.09206	8.17662
RAJASTH	lan			
1990	.587028	10.3035	.211773	8.52328
1991	.591523	10.0246	.196666	10.2914
1992	.524132	9.77875	.201688	10.1332
TAMILNA	ADU			
1990	8.52427	.766879	9.35523	.341777
1991	9.28971	.816606	10.7127	345166
1992	9.50209	.836595	9.99721	.328050
UTTAR I	PRADESH			
1990	2.58165	8.68359	3.86810	10.3757
1991	2.68002	8.44729	4.18066	9.20283
1992	2.50394	8.43369	3.83857	8.93006
WEST BE	ENGAL			
1990	8.75560	2.98130	14.0734	1.32573
1991	8.52193	3.03424	13.4727	1.16254
1992	8.73420	2.75119	13.3405	1.13764
NORTH I	EASTERN			
1990	13.3094	.727366	13.9750	.235907
1991	13.5007	.753305	14.0392	.239727
L				

1992	12.9273	.957060	12.7173	. 220677
NORTH V	VESTERN			
1990	3.25282	6.86121	4.73816	5.13042
1991	2.08233	7.10240	4.75544	5.85057
1992	2.15284	6.92822	4.28970	7.13432
SOUTHER	RN			
1990	8.00070	1.64720	7.43619	1.77500
1991	8.05823	2.07597	9.27349	1.85497
1992	6.72275	1.77857	9.13861	1.72128

(Per Month in Tonnes)					
	URBA	N	RU	RAL	
ANDHRA	PRADESH				
	RICE	WHEAT	RICE	WHEAT	
1990	194066.	19307.5	214086.	4041.90	
1991	183182.	16834.7	236400.	3990.44	
1992	178939.	15480.8	213994.	3746.96	
ASSAM					
1990	25936.8	3308.42	32461.0	1461.17	
1991	27831.2	3613.55	33038.4	1428.86	
1992	26803.5	3410.22	31436.3	1387.65	
BTHAR					
1990	85169.2	70671.1	102556.	67875.2	
1991	80232.3	64880.8	99442.6	62090.5	
1992	75252.8	75693.9	97143.4	60028.9	
GUJRAT					
1990	32963.1	77967.1	29745.6	89922.0	
1991	29188.5	78993.7	29466.8	83957.9	
1992	31352.9	77021.2	30923.6	73755.8	
HARYAN	IA				
1990	4161.02	36594.4	4231.69	38851.0	
1991	3850.25	35635.0	3949.46	34299.4	
1992	4036.20	34256.5	2932.86	38767.2	
KARNAT	'KA				
1990	84633.6	21736.1	66974.9	12952.3	
1991	88273.1	25090.6	72818.3	12515.0	
1992	81976.0	24436.3	67168.5	11766.7	
KERALA	X				
1990	65050.7	7970.23	67838.6	6896.85	
1991	71798.3	9063.28	75017.9	6802.15	
1992	64607.3	7597.77	68745.1	6357.60	
MADHY	A PRADESH				
1990	58179.1	112026.	93795.9	99711.6	

1991	56592.6	110585.	92388.6	93745.4	
1992	59087.2	108785.	96975.3	82257.4	
MAHARA	SHTRA				
1990	128879.	163428.	104405.	92419.5	
1991	112037.	163578.	98006.7	96485.6	
1992	117294.	159611.	100459.	80389.8	
ORISSA					
1990	50672.0	10385.6	63471.8	2334.20	
1991	46225.3	9695.49	72264.5	3171.88	
1992	45634.9	10944.3	63064.8	3963.73	
PUNJAB					
1990	5145.74	50364.5	3865.78	85412.4	
1991	7917 29	48270.6	5031 40	67757 K	
1992	4687.74	49809.8	6544.96	49004.3	
RAJAST	HAN				
1990	5909.68	103726.	2131.94	85804.8	
1991	5954.93	100919.	1979.86	103605.	
1992	5276.50	98443.8	2030.42	102012.	
TAMILN	IADU				
1990	162623.	14630.2	178475.	6520.28	
1991	177225.	15578.9	204373.	6584.94	
1992	181277.	15960.2	190723.	6258.40	
UTTAR	PRADESH				
1990	71268.8	239718.	106782.	286431.	
1991	73984.4	233195.	115411.	254053.	
1992	69123.6	232820.	105967.	246522.	
WEST E	BENGAL				
1990	163796.	55773.0	263280.	24801.2	
1991	159425.	56763.4	252042.	21748.3	
1992	163396.	51468.2	249569.	21282.5	
NORTH	EASTERN				
1990	25703.2	1404.70	26988.7	455.586	
1991	26072.7	1454.79	27112.6	462.963	
1992	24965.3	1848.28	24559.8	426.174	
NORTH	WESTERN				
L					

1990	35244.9	74342.4	51338.8	55589.0
1991	22562.4	76955.8	51526.0	63392.0
1992	23326.4	75068.5	46479.7	77301.6
SOUTHER	RN			
1990	9281.4	1910.87	8626.53	2059.13
1991	9348.14	2408.28	10757.9	2151.90
1992	7798.89	2063.27	10601.5	1996.81
1				

TABLE 5.1 RURAL WHEA				(F TING
	PER CAPITA			RATIO OF
S.NO. STATE/U.T.			ALLOCATION	
	(in tonnes)		TO (1)	TO (1)
		= (2)		
1. ANDHRA PRADESH			1.56145229	
2. ARUNACHAL PRADESH	0.00023		30.5565091	
3. ASSAM			2.50291712	
			0.07073750	
			10.7903732	
6. GUJRAT			0.21422509	
7. HARYANA			0.09802384	
8. HIMACHAL PRADESH				
9. JAMMU & KASHMIR			0.47506068	
10. KARNATAKA			0.74532711	
11. KERALA			1.55972616	
12. MADHYA PRADESH			0.15047675	
13. MAHARA CUTRA			0 36820388	
14. MANIPUR			6.29782794	
			4.79749735	
16. MIZORAM			18.5390770	
17. NAGALAND	0.00023	0.07262164	39.7951446	34.8775411
18. ORISSA	0.00074	0.23365223	0.76474774	0.65045056
19. PUNJAB	0.01124	3.54898803	0.14135673	0.08865714
20. RAJASTHAN	0.00964	3.04379400	0.13403101	0.11857773
21. SIKKIM	0.00023	0.07262164	111.212006	56.9015155
22. TAMILNADU	0.00033	0.10419626	1.01566554	0.64646961
23. TRIPURA	0.00023	0.07262164	28.6469476	13.2327872
24. UTTAR PRADESH 25. WEST BENGAL	0.0095	2.99958952	0.05420145	0.04699178
25. WEST BENGAL	0.0012	0.37889551	0.72098708	0.58116917
26. ANDAMAN &NICOBAL	R 0.00178	0.56202835	2.87188758	2.51290164
27. CHANDIGARH	0.00603	1.90394998	0.14227040	0.11904258
28. DADRA & N.HAVEL	I 0.00178	0.56202835	0.73927103	0.10142437
29. DAMAN & DIU		0.56202835	129.578775	87.3167788
30. DELHI	0.00603	1.90394998	0.84384929	0.74746945
31. LAKSHADWEEP			1.78065657	
32. PONDICHERRY			167.502134	
	0.00316718			8.71998340
STD.DEV.	0.00336481		30.0252161	19.0359944
C.V.	1.06239766			2.18303103

TABLE 5.2: MONTHLY RURAL WHEAT	DEMAND AND	PDS - ALLOCATION/ LIFTING	-
RATIO OF	RATIO OF	RATIO OF RATIO OF	
S.NO. STATE/U.T. (3) TO	(4) TO	(5) (6)	
AVERAGE	AVERAGE	TO (2) TO (2)	
	= (6)	= (7) $=$ (8)	
1. ANDHRA PRADESH 0.12179815	0.08952141	1.83689010 1.35011076	
2. ARUNACHAL PRADESH2.38350305			
		1.10416046 1.30827126	
		0.00313738 0.00418500	
		1.49758064 1.66289142	
6. GUJRAT 0.01671022	0.02041575	0.00914040 0.01116731	
7. HARYANA 0.00764616	0.00747204	0.00244360 0.00238796	
8. HIMACHAL PRADESH 0.03453697	0.03118056	0.01813964 0.01637677	
9. JAMMU & KASHMIR 0.03705621	0.03780708	0.01946280 0.01985718	
10. KARNATAKA 0.05813784	0.08156985	0.20923676 0.29356804	
11. KERALA 0.12166350	0.15180821	0.44804708 0.55906021	
12. MADHYA PRADESH 0.01173765	0.01546134	0.00620606 0.00817489	
13. MAHARASHIRA 0.028/6707	0.04130555	0.03615404 0.05198778	
14. MANIPUR 0.49125022	0.63553046	6.76451566 8.75125446	
15. MEGHALAYA 0.37421976	0.51583475	5.15300612 7.10304459	
16. MIZORAM 1.44610585	1.97584462	19.9128775 27.2073804	
17. NAGALAND 3.10414544	3.99971801	42.7440827 55.0761170	
18. ORISSA 0.05965271	0.07459295	0.25530553 0.31924776	
19. PUNJAB 0.01102626	0.01016710	0.00310687 0.00286478	
		0.00343480 0.00446757	
21. SIKKIM 8.67488350	6.52540316	119.453145 89.8548015	
22. TAMILNADU 0.07922508	0.07413642	0.76034471 0.71150747	
23. TRIPURA 2.23455129	1.51752147	30.7697713 20.8962707	
24. UTTAR PRADESH 0.00422788	0.00538896	0.00140948 0.00179656	
25. WEST BENGAL 0.05623924	0.06664784	0.14842941 0.17590031	
26. ANDAMAN &NICOBAR0.22401619	0.28817679	0.39858521 0.51274422	
27. CHANDIGARH 0.01109753	0.01365167	0.00582869 0.00717018	
28. DADRA & N.HAVELI0.05766544	0.01163123	0.10260238 0.02069510	
29. DAMAN & DIU 10.1075488	10.0133920	17.9840549 17.8165247	
30. DELHI 0.06582287	0.08571897	0.03457174 0.04502165	
31. LAKSHADWEEP 0.13889676	0.06922160	0.24713480 0.12316390	
32. PONDICHERRY			
AVERAGE		9.12108529 9.07993549	
STD.DEV.		22.9595139 20.0341627	
C.V.		2.51719101 2.20642126	

TABLE 6.1: MONTHLY (
		RATIO OF	ALLOCATION	RATIO OF
S.NO. STATE/U.T.		• •		
	-	AVERAGE	• •	TO (1)
1. ANDHRA PRADESH	(1)	= (2)		= (4)
2 ADIMACUAL DRADECK		0.22561692	0.34156/68	0.17076209
2. ARUNACHAL PRADESH 3. ASSAM		0.10801410	8./8499636	8.65888825
4. BIHAR	0.00138	1 45475010	1.0156/051	0.81855804
5. GOA	0.00019	1.45475910 0.42773207	10 553232	7 97053031
5. GOA 6. GUJRAT		1.28554641		
7. HARYANA	0.00347	2.05405405	0.22075745	0.10044004
8. HIMACHAL PRADESH	0.00696	1 63570067	0.11114002	0.073676301
9. JAMMU & KASHMIR				
10. KARNATAKA	0.00030	1.05572207	0.41130273	0.26902001
11. KERALA	0 00106	0.39952996 0.24911868	1 265/3921	1 07400012
12 MADHVA PRADESH	0 00719	1 68977673	0 125362/1	0 11232121
13 MAHARASHTRA	0 00457	1.07403055	0.20336118	0 19890278
12. MADHYA PRADESH 13. MAHARASHTRA 14. MANIPUR	0 0008	0 18801410	1 81062553	1 59327486
15. MEGHALAYA	0 0008	0 18801410	1 37928048	1 29319773
16. MIZORAM	0 0008	0 18801410	5 32998464	A 953AA2A7
17. NAGALAND	0 0008	0.18801410 0.18801410 0.57109283 1.93889541	11 4411040	10 0272930
18. ORISSA	0 00243	0 57109283	0 23288614	0 19807959
19. PUNJAB	0.00825	1.93889541	0.19258784	0.12078864
20. RAJASTHAN	0.01003	2.35722679	0.12881943	0.11396703
21. STKKTM				
22. TAMILNADU	0.008	1.88014101 1.88014101 1.88014101	0.04189620	0.02666687
23. TRIPURA	0.008	1.88014101	0.82359974	0.38044263
24. UTTAR PRADESH	0.00851	2	0.06050690	0.05245851
25. WEST BENGAL	0.00292	0.68625146	0.29629606	0.23883664
26. ANDAMAN &NICOBAL	R 0.00182	0.42773207	2.80876918	2.45767303
27. CHANDIGARH	0.00696	1.63572267	0.12326013	0.10313603
28. DADRA & N.HAVEL				
29. DAMAN & DIU	0.00182	0.42773207	126.730890	85.3977287
30. DELHI	0.00696	1.63572267	0.73109357	0.64759207
31. LAKSHADWEEP	0.00182	0.42773207	1.74152126	0.59034619
32. PONDICHERRY				
AVERAGE	0.004255		5.86018295	4.19817607
	0.00310765		35.1547504	24.8325197
C.V.	0.73035296		5.99891688	5.91507343

TABLE 6.2: URBAN WHEAT DEMAND AND PDS - ALLOCATION/LIFTING					
		RATIO OF	RATIO OF	RATIO OF	
S.NO. STATE/U.T.		(4) TO	(5)	(6)	
5	AVERAGE	AVERAGE	TO (2)	то (2)	
	= (5)	= (6)	= (7)	= (8)	
1. ANDHRA PRADESH		0.04067535		0.18028504	
2. ARUNACHAL PRADES					
3. ASSAM	0.17331822	0.19497969	0.53439786	0.60118740	
4. BIHAR	0.01086183	0.01375656	0.00746641	0.00945624	
5. GOA	1.80083495	1.89857227	4.21019381	4.43869507	
6. GUJRAT	0.03869460	0.04488622	0.03009973	0.03491606	
7. HARYANA	0.01896630	0.01759779	0.00923359	0.00856734	
8. HIMACHAL PRADESH	0.06545898	0.05611106	0.04001838	0.03430353	
9. JAMMU & KASHMIR	0.07023377	0.06803582	0.04293745	0.04159374	
10. KARNATAKA	0.06583691	0.08770408	0.16478593	0.21951816	
11. KERALA	0.21593834	0.25582574	0.86680912	1.02692315	
12. MADHYA PRADESH	0.02139223	0.02675480	0.0126598	0.01583333	
13. MAHARASHTRA	0.03470219	0.04737844	0.03231024	0.04411275	
14. MANIPUR	0.30897082	0.37951646	1.64333856	2.01855320	
15. MEGHALAYA	0.23536475	0.30803839	1.25184626	1.63837921	
16. MIZORAM	0.90952530	1.17990499	4.83753772	6.27561970	
17. NAGALAND	1.95234590	2.38849108	10.3840397	12.7037869	
18. ORISSA	0.03974042	0.04718235	0.06958662	0.08261767	
19. PUNJAB	0.03286379	0.02877173	0.01694975	0.01483924	
20. RAJASTHAN	0.02198215	0.02714683	0.00932542	0.01151642	
21. SIKKIM	0.54560501	0.38967415	0.29019366	0.20725794	
22. TAMILNADU	0.00714929	0.00635202	0.00380253	0.00337848	
23. TRIPURA				0.04819907	
24. UTTAR PRADESH	0.01032508	0.01249556	0.00516254	0.00624778	
25. WEST BENGAL	0.05056088	0.05689064	0.07367691	0.08290058	
26. ANDAMAN &NICOBA	R0.47929718	0.58541523	1.12055468	1.36864935	
27. CHANDIGARH	0.02103349	0.02456689	0.01285884	0.01501898	
28. DADRA & N.HAVEL	10.12337896	0.02362821	0.28844918	0.05524068	
29. DAMAN & DIU	21.6257568	20.3416528	50.5591183	47.5569959	
30. DELHI	0.12475610	0.15425577	0.07626971	0.09430435	
31. LAKSHADWEEP	0.29717865	0.14061986	0.69477756	0.32875688	
32. PONDICHERRY	NA	NA			
AVERAGE			2.76112345	2.90767034	
STD.DEV.			9.05137426	8.70799976	
c.v.			3.27814906	2.99483735	

TABLE 7.1: RURAL RIC	E DEMAND AN	ID PDS - AL	LOCATION/LI	FTING
	PER CAPITA	RATIO OF	RATIO OF	RATIO OF
S.NO. STATE/U.T.	CONSUMPTION	(1) TO	ALLOCATION	LIFTING
			TO (1)	
	(1)		= (3)	
1. ANDHRA PRADESH	0.01237	1.47158543	0.18557514	0.16632506
2. ARUNACHAL PRADESH 3. ASSAM 4. BIHAR	0.01357	1.61434230	0.73137721	0.63690667
3. ASSAM	0.01248	1.48467148	0.13478636	0.12801993
4. BIHAR	0.00877	1.04331481	0.01815391	0.00883750
5. GOA	0.00861	1.02428056	0.44480109	0.40293551
6. GUJRAT 7. HARYANA	0.0021	0.24982452	0.31520929 0.20543280	0.27709182
7. HARYANA	0.00091	0.10825729	0.20543280	0.09915470
8. HIMACHAL PRADESH				
9. JAMMU & KASHMIR				
			0.24441863	
11. KERALA			0.73880442	
<pre>12. MADHYA PRADESH 13. MAHARASHIKA 14. MANIPUR</pre>	0.00615	0.73162897	0.06984741	0.05063295
13. MAHARASHIKA	0.00284	0.33182133	6.2. 04040	0.23242564
14. MANIPUR	0.01357	1.61434230	0.30439538	0.22262234
15. MEGHALAYA	0.01357	1.61434230	0.42721313	0.40253073
16. MIZORAM	0.01357	1.61434230	0.89031444	0.81730865
17. NAGALAND	0.01357	1.61434230	0.60163745 0.05653355 0.08926438	0.56322066
18. ORISSA	0.01564	1.86059791	0.05653355	0.03938134
19. PUNJAB	0.00085	0.10111945	0.08926438	0.02433018
20. RAJASTHAN	0.0002	0.02379281	0.40019804	0.17705922
21. SIKKIM	0.01357	1.61434230	0.83600934	0.52577937
22. TAMILNADU	0.01001	1.19083025	0.12469814	0.12070943
23. TRIPURA	0.01357	1.61434230	0.42930330	0.33000487
24. UTTAR PRADESH	0.00395	0.46990804	0.05964128	0.04833238
24. UTTAR PRADESH 25. WEST BENGAL	0.01362	1.62029051	0.07807252	0.33000487 0.04833238 0.05145298
26. ANDAMAN &NICOBA	0.00861	1.02428056	0.87357764	0.73906214
27. CHANDIGARH			0.07584238	
28. DADRA & N.HAVELI	0.00861	1.02428056	0.46362812	0.08620221
29. DAMAN & DIU	0.00861	1.02428056	0.60182427	0.15879268
30. DELHI	0.00458	0.54485539	0.47898770	0.33162172
31. LAKSHADWEEP	0.00861	1.02428056	1.12933706	0.86104151
32. PONDICHERRY	0,00861	1.02428056	0.30193979	0.05990868
AVERAGE	0.00840593	1.02.20000		0.29170034
STD.DEV.				0.25222510
C.V.	0.54424448		0.77433297	0.86467194
····	0.03323330			

TABLE 7.2: RURAL RI				
	RATIO OF	RATIO OF	RATIO OF	RATIO OF
S.NO. STATE/U.T.		(4) TO	(5)	(6)
		AVERAGE	TO (2)	
		= (6)		• •
1. ANDHRA PRADESH		0.57019162		
2. ARUNACHAL PRADES				
3. ASSAM		0.43887488		
4. BIHAR		0.03029651		
5. GOA		1.38133389		
6. GUJRAT		0.94991958		
7. HARYANA		0.33991977		
8. HIMACHAL PRADESH				
9. JAMMU & KASHMIR		1.84357574		
10. KARNATAKA		0.77348556		
11. KERALA		2.49090966		
12. MADHYA PRADESH		0.17357870		
13. MAHARASUTPA		0.79679604		
14. MANIPUR		0.76318860		
15. MEGHALAYA		1.37994623		
16. MIZORAM		5 2.80187802		
17. NAGALAND	1.49877187	1.93081962	0.92841020	1.19604102
18. ORISSA		0.13500619		
19. PUNJAB		8 0.08340815		
20. RAJASTHAN	0.99695517	0.60699021	41.9015273	25.5114954
21. SIKKIM	2.08262847	1.80246428	1.29007860	1.11653165
22. TAMILNADU		0.41381319		
23. TRIPURA		8 1.13131483		
24. UTTAR PRADESH				
25. WEST BENGAL	0.19449072	2 0.17638989	0.12003448	0.10886312
26. ANDAMAN &NICOBA	R2.17621690	2.53363520	2.12462969	2.47357539
27. CHANDIGARH	0.18893510	0.15856919	0.34676191	0.29102986
28. DADRA & N.HAVEL	II.15496931	0.29551637	1.12759077	0.28851116
29. DAMAN & DIU	1.49923727	0.54436928	1.46369786	0.53146501
30. DELHI	1.19323238	3 1.13685768	2.18999828	2.08653101
31. LAKSHADWEEP				
32. PONDICHERRY				
AVERAGE				1.98327459
STD.DEV.				4.35432632
C.V.				2.19552367

TABLE 8.1: URBAN RICE DEM			
PER C	APITA RATIO OF	RATIO OF	RATIO OF
S.NO. STATE/U.T. CONSU	MPTION (1) TO	ALLOCATION	
	onnes) AVERAGE		TO (1)
(1		= (3)	= (4)
1. ANDHRA PRADESH 0.	01036 1.41302272	0.22157959	0.19859469
1. ANDHRA PRADESH0.2. ARUNACHAL PRADESH0.3. ASSAM0.4. BIHAR0.	01324 1.80583212	0.74960640	0.65278123
3. ASSAM 0.	01079 1.47167134	0.15589748	0.14807125
4. BIHAR 0.	00706 0.96292861	0.02255097	0.01097803
5. GOA 0.	00759 1.03521645	0.50457673	0.45708494
6. GUJRAT 0.	00218 0.29733489	0.30364197	0.26692332
7. HARYANA $0.$	00098 0.13366431	0.19075903	0.09207222
	00249 0.33961646		
	00249 0.33961646		
	00611 0.83335606		
11. KERALA 0.	00873 1.19070351	0.77688713	0.76405265
12. MADHYA FRADESH 0.	00377 0.51419842	0.11324206	l 08259753
13. MAHARASHTRA 0.	00336 0.45827763	0.20103176	0.19645500
12. MADNYA FRADESH0.13. MAHARASHTRA0.14. MANIPUR0.	01324 1.80583212	0.31198228	0.22817109
15. MEGHALAYA 0.	01324 1.80583212	0.43786119	0.41256359
16. MIZORAM 0.	01324 1.80583212	0.91250506	0.83767964
17. NAGALAND 0.	01324 1.80583212 01121 1.52895605 00098 0.13366431	0.61663295	0.57725864
18. ORISSA 0.	01121 1.52895605	0.07887464	0.05494418
19. PUNJAB 0.	00098 0.13366431	0.07742319	0.02110271
20. RAJASTHAN 0.	00056 0.07637960	0.14292787	0.06323543
	01324 1.80583212		
22. TAMILNADU 0.	00911 1.24253252	0.13701738	0.13263462
	01324 1.80583212		
24. UTTAR PRADESH 0.	00258 0.35189175	0.09131126	0.07399725
24. UTTAR PRADESH 0. 25. WEST BENGAL 0.	00866 1.18115605	0.12278843	0.08092259
26. ANDAMAN &NICOBAR 0.	00759 1.03521645	0.99097542	0.83838275
	00249 0.33961646		
28. DADRA & N.HAVELI 0.	00759 1.03521645	0.52593388	0.09778670
29. DAMAN & DIU 0.	00759 1.03521645	0.68270184	0.18013241
	00249 0.33961646		
31. LAKSHADWEEP 0.			
32. PONDICHERRY 0.			
AVERAGE 0.007	33187	0.46542759	0.33413110
STD.DEV. 0.004	28393	0.40858857	0.29663875
C.V. 0.584	28930	0.87787784	0.88779149
0.504		0.07707704	

TABLE 8.2: URBAN RICE DEMAND AND PDS - ALLOCATION / LIFTING					
	RATIO OF	RATIO OF	RATIO OF	RATIO OF	
S.NO. STATE/U.T.	(3) TO	(4) TO	(5)	(6)	
	AVERAGE	AVERAGE	то (2)	то (2)	
	= (5)	= (6)	= (7)	= (8)	
1. ANDHRA PRADESH	0.47587308	0.59436161	0.33677666	0.42063131	
2. ARUNACHAL PRADES	H1.60988430	1.95366798	0.89149167	1.08186578	
3. ASSAM	0.33481158	0.44315315	0.22750431	0.30112236	
4. BIHAR	0.04843135	0.03285546	0.05029589	0.03412035	
5. GOA		1.36798085			
6. GUJRAT	0.65211349	0.79885805	2.19319528	2.68672821	
7. HARYANA	0.40968162	0.27555717	3.06500384	2.06156134	
8. HIMACHAL PRADESH	1.09625115	1.30173520	3.22790931	3.83295670	
9. JAMMU & KASHMIR	4.02641894	2.96037747	11.8557824	8.71682552	
10. KARNATAKA	0.42526503	0.54706153	0.51030412	0.65645593	
11. KERALA	1 66847747	2 28668525	1 40125015	1.92044290	
12. MADHYA PRADESH	0.24470648	0.24720097	0.47589893	0.48075016	
13. MAHARASHTRA	0.43174376	0.58795786	0.94210086	1.28297306	
14. MANIPUR	0.67002546	0.68287893	0.37103419	0.37815194	
15. MEGHALAYA	0.94036798	1.23473569	0.52073942	0.68374888	
16. MIZORAM	1.95973189	2.50703884	1.08522373	1.38830116	
17. NAGALAND	1.32430527	1.72764115	0.73334904	0.95670086	
18. ORISSA	0.16939429	0.16443899	0.11079082	0.10754984	
19. PUNJAB	0.16627710	0.06315698	1.24399027	0.47250443	
20. RAJASTHAN	0.30695754	0.18925337	4.01884161	2.47779983	
21. SIKKIM	1.84019723	1.61279253	1.01903006	0.89310213	
22. TAMILNADU	0.29426394	0.39695384	0.23682595	0.31947159	
23. TRIPURA		1.01226756			
24. UTTAR PRADESH	0.19610368	0.22146174	0.55728410	0.62934621	
25. WEST BENGAL	0.26370528	0.24218814	0.22326032	0.20504331	
26. ANDAMAN &NICOBA	R2.12825795	2.50914312	2.05585792	2.42378597	
27. CHANDIGARH	0.29959840	0.25462727	0.88216690	0.74974949	
28. DADRA & N.HAVEI	JI1.12951637	0.29265968	1.09109198	0.28270385	
29. DAMAN & DIU	1.46619743	0.53910699	1.41631967	0.52076741	
30. DELHI		1.82554359	5.57138455	5.37530945	
31. LAKSHADWEEP				2.82382254	
32. PONDICHERRY	0.73560235	5 0.20339220	0.71057830	0.19647311	
AVERAGE			1.60165971	1.44508658	
STD.DEV.				1.76488305	
c.v.			1.38234290	1.22129917	