Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/123456789/7730
DC FieldValueLanguage
dc.contributor.authorJalan, Ekta
dc.contributor.authorPanchapagesan, Venkatesh
dc.contributor.authorVenkataraman, Madalasa
dc.date.accessioned2017-04-05T06:12:32Z
dc.date.accessioned2019-05-27T08:27:31Z-
dc.date.available2017-04-05T06:12:32Z
dc.date.available2019-05-27T08:27:31Z-
dc.date.issued2017
dc.identifier.otherWP_IIMB_537-
dc.identifier.urihttp://repository.iimb.ac.in/handle/123456789/7730-
dc.description.abstractWe examine whether internet search intensity, as captured by Google s Search Volume Index (SVI), predicts house price changes in an emerging market like India.  Emerging markets have low internet penetration and high information asymmetry with a dominant unorganized real estate market.  Like in developed markets such as the US, we find that internet search intensity strongly predicts future house price changes.  A simple rebalancing strategy of buying a representative house in the city with the greatest change in search intensity and selling a representative house in the city with the smallest change in search intensity each quarter yields an annualized excess (over risk-free government t-bills) return of 4 percent.
dc.language.isoen_US
dc.publisherIndian Institute of Management Bangalore-
dc.relation.ispartofseriesIIMB Working Paper-537-
dc.subjectGoogle trends search volume index-
dc.subjectHouse price index-
dc.subjectSearch intensity-
dc.subjectHousing price forecasting-
dc.titleDoes internet search intensity predict house prices in emerging markets?: a case of India
dc.typeWorking Paper
dc.pages27p.
Appears in Collections:2017
Files in This Item:
File SizeFormat 
WP_IIMB_537.pdf414.93 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.